AT54 EXAMEN FINAL

27 juin 2010 de 10h15 à 12 h 15 en salle P227 à Sévenans

You can answer either in English or in French No documents or PC's allowed. Mobile phones must be TURNED OFF Write clearly and avoid erasures

PART1: SIGNAL PROCESSING

EXERCISE 1 (3 POINTS)

Consider the following LTI system, whose Z-transform of the impulse response is:
$H(z)=\frac{\left(1-z^{-1}\right)}{\left(1-2 z^{-1}\right)\left(1-5 z^{-1}\right)} \quad|z|<2$

Compute :

a) $h(n)$, that is the impulse response
b) The corresponding difference equation if $x[n]$ is the input sequence and $y[n)]$ the output sequence.
c) Is the system stable ? Is it causal? Why?
d) Compute the output $y(n)$ if a unit step function is given (considering null initial conditions). Make the computation by using BOTH the Z-transform AND the convolution product, and verify that the result is the same.
(Hint: $\sum_{k=-\infty}^{n} a^{k}=\frac{a^{n+1}}{a-1}$ if $|a|>1 \ldots$ why?)

EXERCISE 2 (3 POINTS) (Theory and practice)

Define the DFT computed on N-points, by using the notion of DFS. Then consider the following finite-length sequence:

$$
x[n]=\left\{\begin{array}{lc}
1, & 0 \leq n \leq 4 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Compute the 5 -point DFT of $x[n]$.

PART2: SYSTEM IDENTIFICATION

EXERCISE 3 (2 POINTS)

Consider the noise model below
$v(t)=\left(1+a_{1} q^{-1}+a_{2} q^{-2}\right)^{-1} e(t)$
where $e(t)$ is white noise whose variance is equal to λ.
a) What kind of system is it ?
b) What is the estimator $\hat{v}(t t-1)$?
c) What is the value and the variance of the estimation error ε ?

EXERCISE 4 (2 POINTS) (Theory)

Describe and compare the model structures OE and ARX. Then compute for each of them the minimum variance estimator. Draw a block diagram for each of them to explain their difference. What is the name and the form of the generalized $O E$?

EXERCISE 5 (3 POINTS) (Theory)

a) Define an ARARMAX system (which is not an ARMAX!)
b) Find the minimum variance estimator
c) Find the parameter vector, the regressor vector and the corresponding equation

EXERCISE 6 (3 POINTS)

Consider the following white noise e(t):

$e(t)$	-22	-3	0	2	4	5
probability	$1 / 12$	$1 / 12$	$1 / 4$	$1 / 4$	$1 / 12$	$1 / 4$

a) Verify that e(t) is zero mean and compute its variance

Then, if $v(t)=H(q) e(t)$, call $\hat{v}(t \mid t-1)$ the minimum variance estimator of $v(t)$.
b) What is the MAP value of $v(t)$ given the information $\hat{v}(t \mid t-1)$?
c) What is the probability that $v(t)$ has a value between $\hat{v}(t \mid t-1)-1$ and $\hat{v}(t \mid t-1)+2$?

EXERCISE 7 (4 POINTS)

The following data pairs are given, which are the measured inputs and outputs of a system described by the function $y(x)=\alpha_{1} 3^{\alpha_{2} x}$.

x_{i}	1	2	3	4
y_{i}	$\sqrt{27}$	1	1	81

Determine the parameters α_{1} and α_{2} so that the function $y(x)$ approximates the data $\left(x_{i}, y_{i}\right)$ in the least-squares sense. (Hint: make a suitable change of variables in order to use the least-squares method).

USEFUL DOCUMENTATION

$$
\begin{equation*}
A(q) y(t)=\frac{B(q)}{F(q)} u(t)+\frac{C(q)}{D(q)} e(t) \tag{4.33}
\end{equation*}
$$

TABLE 4.1	Some Common Black-box SISO Models as Special Cases of (4.33)
Polynomials Used in (4.33)	Name of Model Structure
B	FIR (finite impulse response)
$A B$	ARX
$A B C$	ARMAX
$A C$	ARMA
$A B D$	ARARX
$A B C D$	ARARMAX
$B F$	OE (output error)
$B F C D$	BJ (Box-Jenkins)

Sequence	Transform	ROC
1. $s[n]$	1	All z
2. $u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	$\|z\|<1$
4. $s(n-m]$	z^{-m}	$\begin{aligned} & \text { All zexcept } 0 \text { (if } m>0 \text {) } \\ & \text { or } \infty(\text { (if } m<0) \end{aligned}$
5. $a^{n} u[n]$	$\frac{1}{1-a z^{-1}}$	$\|z\|>\|a\|$
6. $-a^{n} u[-n-1]$	$\frac{1}{1-a z^{-1}}$	$\|z\|<\|a\|$
7. $n a^{*} u[n]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|>\|a\|$
8. $-n a^{n} u[-n-1]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|<\|a\|$

