AT54 EXAMEN FINAL 27 juin 2010 de 10h15 à 12h15 en salle P227 à Sévenans

You can answer either in English or in French No documents or PC's allowed. Mobile phones must be TURNED OFF Write clearly and avoid erasures

PART1: SIGNAL PROCESSING

EXERCISE 1 (3 POINTS)

Consider the following LTI system, whose Z-transform of the impulse response is:

$$H(z) = \frac{(1-z^{-1})}{(1-2z^{-1})(1-5z^{-1})} \qquad |z| < 2$$

Compute :

- a) h(n), that is the impulse response
- *b)* The corresponding difference equation if *x*[*n*] is the input sequence and *y*[*n*)] the output sequence.
- c) Is the system stable ? Is it causal ? Why?
- *d)* Compute the output y(n) if a unit step function is given (considering null initial conditions). Make the computation by using BOTH the Z-transform AND the convolution product, and verify that the result is the same.

(*Hint*:
$$\sum_{k=-\infty}^{n} a^{k} = \frac{a^{n+1}}{a-1}$$
 if $|a| > 1...why$?)

EXERCISE 2 (3 POINTS) (Theory and practice)

Define the DFT computed on N-points, by using the notion of DFS. Then consider the following finite-length sequence:

$$x[n] = \begin{cases} 1, & 0 \le n \le 4\\ 0 & elsewhere \end{cases}$$

Compute the 5-point DFT of *x*[*n*].

PART2: SYSTEM IDENTIFICATION

EXERCISE 3 (2 POINTS)

Consider the noise model below

 $v(t) = (1 + a_1 q^{-1} + a_2 q^{-2})^{-1} e(t)$

where e(t) is white noise whose variance is equal to λ .

- a) What kind of system is it ?
- b) What is the estimator $\hat{v}(t|t-1)$?
- c) What is the value and the variance of the estimation error ε ?

EXERCISE 4 (2 POINTS) (Theory)

Describe and compare the model structures OE and ARX. Then compute for each of them the minimum variance estimator. Draw a block diagram for each of them to explain their difference. What is the name and the form of the generalized OE?

EXERCISE 5 (3 POINTS) (Theory)

- a) Define an ARARMAX system (which is not an ARMAX !)
- b) Find the minimum variance estimator
- c) Find the parameter vector, the regressor vector and the corresponding equation

EXERCISE 6 (3 POINTS)

Consider the following white noise e(t):

e(t)	-22	-3	0	2	4	5
probability	1/12	1/12	1/4	1/4	1/12	1/4

a) Verify that e(t) is zero mean and compute its variance

Then, if v(t) = H(q)e(t), call $\hat{v}(t|t-1)$ the minimum variance estimator of v(t).

- b) What is the MAP value of v(t) given the information $\hat{v}(t|t-1)$?
- c) What is the probability that v(t) has a value between $\hat{v}(t|t-1) 1$ and $\hat{v}(t|t-1) + 2$?

EXERCISE 7 (4 POINTS)

The following data pairs are given, which are the measured inputs and outputs of a system described by the function $y(x) = \alpha_1 3^{\alpha_2 x}$.

x_i	1	2	3	4
y_i	$\sqrt{27}$	1	1	81

Determine the parameters α_1 and α_2 so that the function y(x) approximates the data (x_i, y_i) in the least-squares sense. (Hint: make a suitable change of variables in order to use the least-squares method).

USEFUL DOCUMENTATION

$$A(q)y(t) = \frac{B(q)}{F(q)}u(t) + \frac{C(q)}{D(q)}e(t) \quad (4.33)$$

TABLE 4.1 Some Common Black-box SISO Models as Special Cases of (4.33)					
Polynomials Used in (4.33)	Name of Model Structure				
В	FIR (finite impulse response)				
AB	ARX				
ABC	ARMAX				
AC	ARMA				
ABD	ARARX				
ABCD	ARARMAX				
BF	OE (output error)				
BFCD	BJ (Box-Jenkins)				

TABLE 3.1 SOME COMMON z-TRANSFORM PAIRS

Sequence	Transform	ROC		
 δ[n] 	1	All z		
2. $u[n] = \frac{1}{1-z^{-1}}$		z > 1		
3. $-u[-n-1]$ $\frac{1}{1-z^{-1}}$		z < 1		
 4. δ[n − m] 	z ^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)		
5. $a^n u[n] = \frac{1}{1 - az^{-1}}$		z > a		
$6a^n u[-n-1] \frac{1}{1-az^{-1}}$		z < a		
7. na ⁿ u[n]	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a		
8. $-na^{n}u[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a		