AT54 Final Exam

16th January 2014 from 8h00 to 10h00 in classroom P323 at Sevenans No documents allowed. Mobile phones are to be turned off.

No I-phone, I-pad, Tablet, Portable PC, Calculator allowed.

1st part: SIGNAL PROCESSING

EXERCICE 1 (3 POINTS)

Consider the following LTI system,

$$H(z) = \frac{1}{(1-3z^{-1})(1+4z^{-1})} \qquad |z| > 4$$

Compute:

a) h(n) and its initial value.

b) The corresponding difference equation.

c) Is the system stable? Is it causal? Why?

EXERCISE 2 (3 POINTS)

Consider an LTI system that is stable and for which H(z), the z-transform of the impulse response, is given by

$$H(z) = \frac{3}{1 + 2z^{-1}}$$

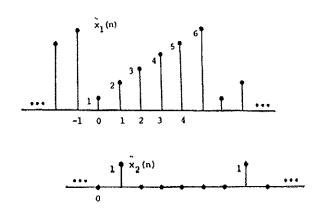
Suppose x[n], the input of the system, is a unit step sequence.

a) Find the output y[n] by evaluating the discrete convolution of x[n] and h[n]

b) Find the output y[n] by computing the inverse z-transform of Y(z).

EXERCICE 3 (3 POINTS)

In the following figure two periodic sequences are shown both with period N=6. Compute graphically their periodic convolution of them $\tilde{x}_3[n]$



EXERCICE 4 (3 POINTS)

In the following figure two finite length sequences are sketched. Compute the 6-point circular convolution:

2nd part: SYSTEM IDENTIFICATION

EXERCICE 5 (2 POINTS)

Let the noise be described by a LTI system as follows:

$$v(t) = \frac{(1 - a_1 q^{-1})}{(1 - b_1 q^{-1})} e(t)$$

where e(t) is a white noise signal whose variance is λ .

- a) What kind of noise model is it?
- b) What is the minimum variance predictor $\hat{v}(t|t-1)$?
- c) What is the value of the prediction error and its variance? Comment on your answer.

EXERCICE 6 (3 POINTS) (Theory)

- a) Define the OE and the ARX systems
- b) For both systems find y(t|t-1)
- c) For both systems find the regressor, the parameter vector and the regression equation.
- d) Can you use the linear least-squares method to compute their parameters? Why?

EXERCICE 7 (3 POINTS) (Theory)
Let a real system LTI be described by the following model:

$$y(t) = G(q)u(t) + H(q)e(t)$$
 where $e(t)$ is the white noise

Define and prove y(t|t-1) on the base of the knowledge of the past values of y(t) till the instant (t-1). To do this you need to define $\hat{v}(t|t-1)$ starting from the LTI noise model v(t) = H(q)e(t)

TABLE 3.1 SOME COMMON z-TRANSFORM PAIRS

Sequence	Transform	ROC
1. δ[n]	1	All z
2. u[n]	$\frac{1}{1-z^{-1}}$	z > 1
3u[-n-1]	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n-m]$	z ^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $a^nu[n]$	$\frac{1}{1-az^{-1}}$	z > a
$6a^n u (-n-1)$	$\frac{1}{1-az^{-1}}$	z < a
7. na ⁿ u[n]	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$8na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
9. $[\cos \omega_0 n]u[n]$	$\frac{1 - (\cos \omega_0)z^{-1}}{1 - (2\cos \omega_0)z^{-1} + z^{-2}}$	z > 1
10. $[\sin \omega_0 n]u[n]$	$\frac{[\sin \omega_0]z^{-1}}{1 - [2\cos \omega_0]z^{-1} + z^{-2}}$	z > 1
11. $[r^n\cos\omega_0n]u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > 1
12. $[r^n \sin \omega_0 n]u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	2 > 1
13. $\begin{cases} a^n, & 0 \le n \le N-1, \\ 0, & \text{otherwise} \end{cases}$	$\frac{1-a^Nz^{-N}}{1-az^{-1}}$	z > 0