Université de Technologie de Belfort-Montbéliard (UTBM) - Département du Tronc Commun (TC)

UV CM19 "Eléments de chimie"

Semestre de printemps 2013

Examen final

date	26 juin 2013
durée	2 heures
notation	/20
modalité	aucun document ni calculatrice : Les calculs seront posés uniquement : 1) de manière littérale, 2) de manière numérique avec des unités du système international d'unités.

EXERCICE 1: structure de l'atome de BOHR (~1,5 points)

- 1. Comment est définie l'énergie d'un atome ?
- 2. Comment définit-on l'état d'un électron ?
- 3. Décrivez l'atome d'hydrogène et de ces différents niveaux d'énergie

remarque : la/les réponse(s) doivent être courtes MAIS justifiée(s).

EXERCICE 2 : classification périodique des éléments (~2 points)

- 1. Donnez un bref historique du tableau périodique des éléments
- 2. Quels sont les éléments majoritairement représentés dans le tableau périodique ?
- 3. Comment sont-ils organisés et à quoi correspond cette organisation ?
- 4. Quelle est la caractéristique des blocs "d" et "f"?

remarque : la/les réponse(s) doivent être courtes MAIS justifiée(s).

EXERCICE 3 : identification d'éléments (~2 points)

On considère les atomes de chrome et de silicium : ${}^{52}_{24}$ Cr et ${}^{28}_{14}$ Si

- 1. Quel est le nombre et la nature des constituants de ces deux atomes ?
- 2. Quelles sont leur structure électronique ?

remarque : la/les réponse(s) doivent être courtes MAIS justifiée(s).

EXERCICE 4 : noyau atomique et radioactivité (~3 points)

- 1. Quel est le processus de transformation d'un noyau radioactif?
- 2. Donnez la définition des isotopes d'un élément chimique.
- 3. Quelle peut être l'origine d'un isotope ?
- 4. Dans quel cas un isotope peut-il être stable?

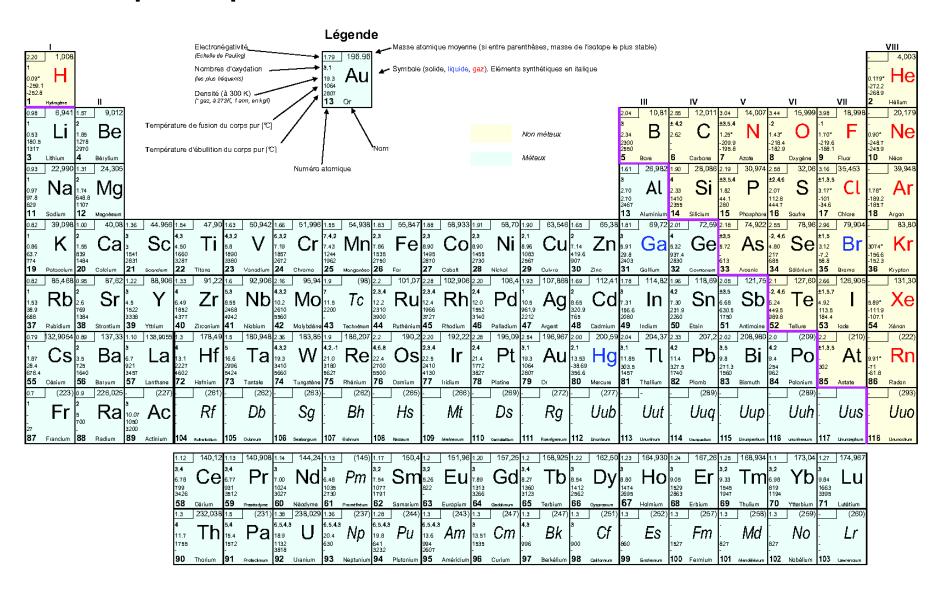
remarque : la/les réponse(s) doivent être courtes MAIS justifiée(s).

EXERCICE 5: oxydoréduction (~5,5 points)

- 1. A quoi correspond la constante d'équilibre d'une réaction chimique ? Donnez son expression, préciser les termes (et leur unité dans le système international d'unités) dans le cas d'un solide, d'un liquide et d'un gaz.
- 2. Comment peut-on définir :
 - a. une réaction d'oxydation?
 - b. une réaction de réduction ?
 - c. un oxydant?
 - d. un réducteur?
- **3.** A quoi correspond le degré d'oxydation ? On considère le phosphate de zinc $Zn_3(PO_4)_2$ à l'état solide, formé de cations de zinc (Zn^{2+}) et d'anions de phosphate (PO_4^{3-}) . Sachant que n.o. (Zn^{2+}) = +II et n.o. (O^{2-}) = -II, déterminez le degré d'oxydation du phosphore.
- **4.** Pour les trois réactions d'oxydoréduction suivantes, **a**) équilibrez les, **b**) identifier la demi-réaction d'oxydation et la demi-réaction de réduction (en justifiant) et **c**) identifiez l'oxydant et le réducteur :

HPO₃ + C → P + CO + H₂O Cu + HNO₃ → Cu (NO₃)₂ + H₂O + NO₂ Sb + HNO₃ → Sb₂O₅ + H₂O + NO₂

remarque : la/les réponse(s) doivent être courtes MAIS justifiée(s).


EXERCICE 6 : pile DANIELL (~6 points)

Cette pile est composée de deux demi-piles, une formée d'une lame de zinc qui plonge dans une solution de chlorure de zinc $(ZnCl_2 \ a \ 10^{-2} \ mol. \ e^{-1})$ et l'autre d'une lame de cuivre immergée dans une solution de sulfate de cuivre (CuSO₄ à 10^{-2} mol. e^{-1}). Les deux demi-piles (compartiments) sont reliées par un pont salin et la pile est opérée à 27° C.

- 1. Schématisez le principe de cette pile.
- 2. Quels sont les rôles du pont salin?
- **3.** Etablissez les systèmes redox en présence et écrivez la relation permettant de calculer le potentiel de chaque compartiment ($E^{\circ}(Cu^{2+}/Cu) = 0,34 \text{ V}$ et $E^{\circ}(Zn^{2+}/Zn) = -0,76 \text{ V}$).
- 4. Donnez la nature de chaque compartiment et écrivez la relation de la force électromotrice de la pile.
- 5. Complétez le schéma de la pile avec le sens du courant, la nature des pôles et la nature des réactions.

remarque : la/les réponse(s) doivent être courtes MAIS justifiée(s).

Tableau périodique des éléments

