
FINAL CP43 du 13/01/2020

Etude Palan Pneumatique

Le schéma cinématique ci-dessous représente un dispositif de réduction de vitesse à double train épicycloïdal, monté sur un palan pneumatique.

L'arbre moteur (moteur pneumatique), solidaire du pignon 1 tourne à une fréquence de rotation permettant au tambour enrouleur lié à 2 d'élever une charge à la vitesse linéaire de 15 m/mn.

Un dispositif de freinage, non représenté sur le schéma, empêche tout mouvement de descente de la charge à l'arrêt du moteur.

Données:

$$Z_1 = 15$$
 $Z_3 = 36$ $Z_5 = 16$ $Z_6 = 20$ $Z_7 = 87$ $Z_8 = 56$

 \emptyset Tambour = 60 mm

Rappel: Formule de Willis:

$$raison = \frac{\omega_{plan\acute{e}taire\ r\acute{e}cepteur} - \omega_{porte-satellite}}{\omega_{plan\acute{e}taire\ moteur} - \omega_{porte-satellite}} = (-1)^n. \frac{Produit\ Z_{menantes}}{Produit\ Z_{men\acute{e}es}}$$

<u>Prénom</u>:

a) Déterminez la raison puis le rapport de réduction du 1 $^{\rm er}$ train épicyclo $\ddot{\rm i}$ dal $r_1=rac{N4}{N1}$

b) Déterminez la raison puis le rapport de réduction du $2^{
m ème}$ train épicycloïdal $r_2=rac{N2}{N5}$

- c) En déduire le rapport de réduction global $\mathbf{r_g}$ du réducteur (nota : $N_4 = N_5$)
- d) Exprimez puis calculez la fréquence de rotation de l'arbre moteur pour pouvoir déplacer la charge à la vitesse de 15 m/mn (prendre $r_g = 0.03 \text{ si c}$) non résolue).

e) Déterminez la puissance minimale du moteur pneumatique pour soulever une charge de **2500 N** à la vitesse de **15 m/mn** si le rendement global est égal à **0,85.**

f) Exprimez puis calculez le couple minimal du moteur pneumatique de ce palan.