This final exam is based on 3 parts. Part 1 consists of a set of questions and represents a total of 10 points. Part 2 and Part 3 are application cases and represent 4 points and 6 points respectively. As a reminder, the use of English language for answering is needed.

Part 1: Questions (10 pts)

1.	What is the definition of PLM?	(1 pt)
2.	Define PDM and MPM, and their role in the PLM strategy.	(2 pts)
3.	What are the main functionalities of a PLM system?	(1 pt)
4.	What are the key features (mechanisms) enabling collaboration between design engineers and process engineers?	(1 pt)
5.	Describe briefly a engineering change management (ECM) process? Then, explain how ECM is implemented within Notixia?	(1 pt)
6.	What are the differences between "bottom-up" and "top-down" modelling approaches in geo- metric modelling phase?	(1 pt)
7.	Explain an emergent modelling approach which promotes collaborative and top-down modelling in the extended enterprise context. List the advantages of such an approach.	(1 pt)
8.	What is the main issue of simulation data management?	(1 pt)
9.	What does DFA mean? Give at least 5 DFA rules among the 20 DFA guidelines.	(1 pt)

Part 2: Skeleton-based modelling (4 pts)

By considering the following case study (See Figure 1), you have to define the final skeleton-based model. This model will be assembly-oriented (skeletons structure and assembly relationships). It is requested to develop this model in a step-by-step way. As appendix, Tables 1 and 2 have been introduced in order to provide guidelines.

Figure 1: Mechanical assembly as a case study for Part 2.

Part 3: Design For Assembly (6 pts)

In the following case study (See Figure 2), you have to improve the product design by considering specific DFA rules. Figure 2 shows a simple sub-assembly used in the construction of a gas-flow meter. The objective is to analyse the design by using the Boothroyd-Dewhurst method with the intention of using the information obtained to create a new, easier-to-assemble, less expensive sub-assembly. In this analysis only manual assembly will be considered. For the redesign of an existing product, it will be assumed that the functional parts must have the same dimensions and be made of the same materials.

Figure 2: Case study for Part 3.

You will find below the DFA worksheet (Figure 3) to be filled according to geometric properties of each part of the case study and estimated times tables in Figures 4 to 9.

1	2	3	4	5	6	7	8	9
Component	Component ID	Instance number of the component in the product	Associated cell reference of the handling time of the component	Manual handling time (s)	Associated cell reference of the insertion time of the component	Manual insertion time (s)	Is this component essential to the product ?	Assembly time (s) (3)*[(5)+(7)]
-	1							
	2							
	3							
	4							
	5							
	6							
	7							
	8							
	9							
	10			Ļ	L			
		Min	mum nun	nber of co	mponent	(Nmin) =		
Product Name:					otal assen	nbly time	(Itotal) =	
		Boothr	oyd & De	whurst DF	-A Efficier	וcy =3*Nn	nin/Ttotal	

Figure 3: DFA Worksheet.

Table 1 Skeleton entities def	inition based on kinematic pairs.			
Kinematic pair	Constraint	Assembly skeleton		
		Entity	Constraint	Assembly axis
Rigid	Coordinate system/coordinate system	Coordinate system	_	Any
Revolute	Axis-axis and Plane-plane	Line, Plane	Perpendicular	Rotation axis
Prismatic	Axis-axis and Plane-plane	Line, plane	Perpendicular	Translation axis
Screw	Axis-axis and Plane-plane	Line, plane	Perpendicular	Rotation axis
Cylindrical	Axis-axis	Line		Translation/rotation axis
Spherical	Point-point	Point	_	Any
Planar	Plane-plane	Plane	_	Perpendicular to the plane
Point-contact	Point-plane	Point, plane	Coincidence	Perpendicular to the plane
Line-contact	Line-plane	Line, plane	Coincidence	Perpendicular angle
Curve-contact	Curve-curve	Curve	_	Translation axis

CP51 Class: Product Lifecycle Management and Design for 'X' Final Examination, Spring 2013

Page 5 of 10

Please go on to the next page...

Table 2 Skeleton entities definiti	on based on technological pairs.			
Technological pair	Constraint	Assembly skeleton		
		Entity	Constraint	Assembly axis
Gluing	Coordinate system/coordinate system	Coordinate system	_	Any
Welding	Coordinate system/coordinate system	Coordinate system	_	Any
Screwing	Axis-axis and plane-plane	Line, plane	Perpendicular	Rotation axis
Riveting	Axis-axis and plane-plane	Line, plane	Perpendicular	Rotation Axis
Cotter	Axis-axis and plane-plane	Line, plane	Perpendicular	Translation axis
Pin	Axis-axis and plane-plane	Line, plane	Perpendicular	Rotation axis
Gear-rack	Curve-curve	Lines, curve	Distance	Rotation axis
Gear-gear	Axis-axis and curve-curve	Lines, curve	Distance	Rotation axis

CP51 Class: Product Lifecycle Management and Design for 'X' Final Examination, Spring 2013

Key: DONE HAND Solution Due to the second secon				Parts are easy to grasp and manipulate						Parts present handling diffic			
Key: ONE HAND $\frac{1}{0}$ $(\alpha + \beta) < 360^{\circ}$ 0				Thie	ckness >2 i	mm	Thicknes	s ≤2 mm	Thickness >2 mm			Thickness ≤2 mm	
Key:	ONE HA	ND		Size >15 mm	6 mm ≤ size >15 mm	Size <6 mm	Size >6 mm	Size ≤6 mm	Size >15 mm	6 mm ≤ size ≤15 mm	Size <6 mm	Size >6 mm	Size ≤6 mm
				0	1	2	3	4	5	6	7	8	9
ls	$(\alpha + \beta) < 360^{\circ}$		0	1.13	1.43	1.88	1.69	2.18	1.84	2.17	2.65	2.45	2.98
d Ing tool	$260^{\circ} < (\alpha + \beta)$		1	1.5	1.8	2.25	2.06	2.55	2.25	2.57	3.06	3	3.38
ed and ne han graspi	$360^\circ \le (\alpha + \beta)$ $< 540^\circ$		2	1.8	2.1	2.55	2.36	2.85	2.57	2.9	3.38	3.18	3.7
e grasp d by or aid of	$540^\circ \le (\alpha + \beta)$	$(\alpha + \beta)$ 3			2.25	2.7	2.51	3	2.73	3.06	3.55	3.34	4
an be ulated t the	< 720	V /											
Parts c manipu without	$(\alpha+\beta)=720^\circ$												

MANUAL HANDLING-ESTIMATED TIMES (seconds)

Figure 4: Manual Handling-estimated times - One Hand

						Parts need tweezers for grasping and manipulation								
				Parts c optical	an be mar magnifica	ipulated v tion	vithout	Parts require optical magnification for manipulation				dard	ial ng on	
[ONE HAND with GRASPING AIDS			Parts are grasp an manipul	e easy to d ate	Parts p handlin difficult	resent g ties (1)	Parts ar grasp ar manipu	e easy to nd late	Parts present handling difficulties (1)		need stan other thar ers	need spec or graspii anipulatio	
		GRASPI		15	Thickness >0.25 mm	Thickness ≤0.25 mm	Thickness >0.25 mm	Thickness ≤0.25 mm	Thickness >0.25 mm	Thickness ≤0.25 mm	Thickness >0.25 mm	Thickness ≤0.25 mm	Parts 1 tools o tweez	Parts 1 tools f
only	00	0 ≤ β ≤ 180°			0	1	2	3	4	5	6	7	8	9
l d but tools	k ≤ 18		-	4	3.6	6.85	4.35	7.6	5.6	8.35	6.35	8.6	7	7
ed and ne han asping	0	β = 360°		5	4	7.25	4.75	8	6	8.75	6.75	9	8	8
graspection of graspection of graspectic data and the second seco		$\alpha \leq \beta$		6	4.8	8.05	5.55	8.8	6.8	9.55	7.55	9.8	8	9
can be ulated	= 360°	5 180		7	5.1	8.35	5.85	9.1	7.1	9.55	7.85	10.1	9	10
Parts (manip with tl	ά	$\beta = 360^{\circ}$												

Figure 5: Manual Handling-estimated times – One Hand with Grasping Aids

Figure 6: Manual Handling-estimated times – Two Hands

MANUAL INSERTION-ESTIMATED TIMES (seconds)

Figure 7: Manual Insertion-estimated times – Part Added but not Secured

Figure 8: Manual Insertion-estimated times – Part Immediately Secured

			Mecha (part(s secure	anical fasten already in d immediate	ing processe place but no ely after inse	es ot ertion)	Non- (part(secure	mechanical f s) already in ed immediat	fastening pro place but no cely after inse	ocesses ot ertion)	Non-fas process	stening es
		Non plas	e or localize tic deformat	d iion	(2)	Metallurgical		DCesses		(;		
				s.	es es	ormation n of y g fastenin	d etc.)	Addition material	nal required	sses onding,	f parts itting or arts(s), etc	s rtion, etc.)
SEPARATE OPERATION			Bending or similar process	Rivetting or similar processe	Screw tightening or other process	Bulk plastic defo (large proportio) part is plastically deformed durin,	No additional material require (e.g. resistance, friction welding	Soldering processes	Weld/braze processeses	Chemical proces (e.g. adhesive bo etc.)	Manipulation of or sub-assembly (e.g. orienting, fi adjustment of p	Other processe: (e.g. liquid inser
Assembly processes where all solid			0	1	2	3	4	5	6	7	8	9
parts are in place	parts are in place		4	7	5	12	7	8	12	12	9	12

Figure 9: Manual Insertion-estimated times – Separate Operation