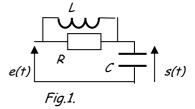
MEDIAN Printemps 2015

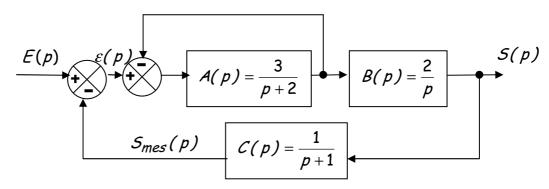
Durée de l'épreuve : 90 minutes

- Il est conseillé aux candidats de prendre connaissance de la totalité du texte du sujet avant de répondre à toute question.
- Les candidats doivent respecter les notations de l'énoncé et préciser, dans chaque cas, la numérotation de la question.
- On accordera la plus grande attention à la clarté de la rédaction, à la présentation, aux schémas et à la présence d'unité de mesure. Les résultats seront encadrés.


Les exercices sont indépendants. Documentation : Une feuille A4 recto/verso est autorisée

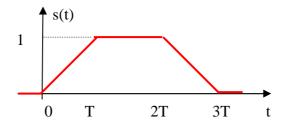
Les conditions initiales sont nulles pour l'ensemble des exercices.

Exercice 1:


On donne le circuit ci-contre alimenté par une source continue e(t) (Fig.1).

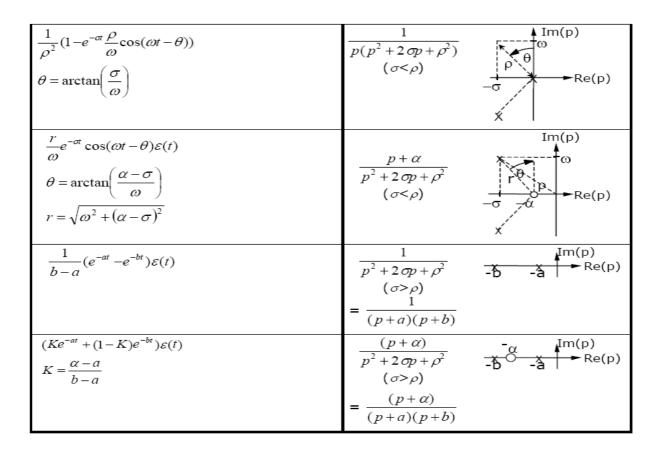
Donner la fonction de transfert liant la sortie à l'entrée de ce circuit.

Exercice 2:


On considère la boucle de régulation représentée ci-dessous où un capteur C(p) est nécessaire pour la mesure du signal.

- 1) Déterminez la fonction de transfert en boucle ouverte G(p) de ce système.
- 2) Simplifiez cette structure et déterminez la fonction de transfert en boucle fermée H(p).

Exercice 3:


Trouvez la transformée de Laplace du signal représenté par la figure suivante (détaillez le calcul):

Annexes

TRANSFORMEE DE LAPLACE

f(t)	F(p)	
δ(t)	1	Ni pôle ni zéro
$\varepsilon(t)$	$\frac{1}{p}$	Im(p) Re(p)
te(t)	$\frac{1}{p^2}$	Im(p) (2) Re(p)
$e^{-at} \varepsilon(t)$ $e^{-at} \varepsilon(t)$ $e^{-at} \varepsilon(t)$ $e^{-at} \varepsilon(t)$	$\frac{1}{p+a}$	Im(p) -a Re(p)
$te^{-at}arepsilon(t)$	$\frac{1}{(p+a)^2}$	(2) Im(p) -a Re(p)
$\frac{1}{\omega}\sin(\omega t)\varepsilon(t)$	$\frac{1}{p^2 + \omega^2}$	Im(p) ×ω ——Re(p) ×–ω
$\cos(\omega t) \varepsilon(t)$ $\cos(\omega t) \varepsilon(t)$	$\frac{p}{p^2 + \omega^2}$	$Im(p)$ \times_{ω} $Re(p)$ $\times_{-\omega}$
$\frac{1}{\omega^2}(1-\cos(\omega t))\varepsilon(t)$	$\frac{1}{p(p^2+\omega^2)}$	Im(p) ×ω Re(p) ×–ω
$\frac{1}{\omega}e^{-\sigma t}\sin(\omega t)\varepsilon(t)$	$\frac{1}{p^2 + 2\sigma p + \rho^2}$ $(\sigma < \rho)$	Im(p) Θ Re(p)

Propriétés fondamentales

$$\begin{split} L_I \Big[af(t) + bg(t) \Big] &= aF(p) + bG(p) \quad \text{(linéarité)} \\ L_I \Big[\frac{df(t)}{dt} \Big] &= pF(p) - f(0_-) \quad \text{(dérivée)} \\ L_I \Big[\int\limits_0^t f(t) dt \Big] &= \frac{F(p)}{p} \quad \text{(intégrale)} \\ L_I \Big[f(t-\tau) \Big] &= e^{-p\tau} F(p) \quad \text{(retard temporel)} \\ L_I \Big[e^{-\sigma t} f(t) \Big] &= F(p+\sigma) \quad \text{(translation de la transformée)} \\ L_I \Big[f(t) * g(t) \Big] &= F(p) G(p) \quad \text{(convolution)} \\ \lim_{p \to \infty} pF(p) &= \lim_{t \to 0+} f(t) \quad \text{(théorème de la valeur initiale)} \\ \lim_{p \to 0} pF(p) &= \lim_{t \to \infty} f(t) \quad \text{(théorème de la valeur finale)} \\ &= (\grave{\mathbf{a}} \text{ condition que ces limites existent)} \\ L_I \Big[\sum_{k=0}^\infty f(t-kT) \varepsilon(t-kT) \Big] &= \frac{F(p)}{1-e^{-pT}} \quad \text{(périodification)} \end{split}$$