MEDIAN Spring 2023

Duration: 90 minutes

- It is advisable to take knowledge of the entire text before answering any question.
- Applicants must respect the used notation and specify in each case the question number.
- Most attention will be given to the clarity of writing, presentation, the diagram and the presence of measurement unit

Results will be put in frames

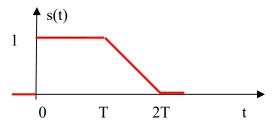
Exercises are independent

Documentation: An A4 double face is authorized, Calculator authorized, phone forbidden

The initial conditions are equal to zero for all exercises.

Exercise 1 (8pts):

Calculate the Laplace transform of the following signal (give all details of intermediate calculations):



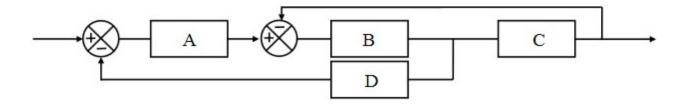
Exercise 2 (6pts):

Calculate the inverse Laplace transform of the following transfer function:

$$F(p) = \frac{p^2 + 5}{p(p^2 + 4)}$$

Exercise 3 (6pts):

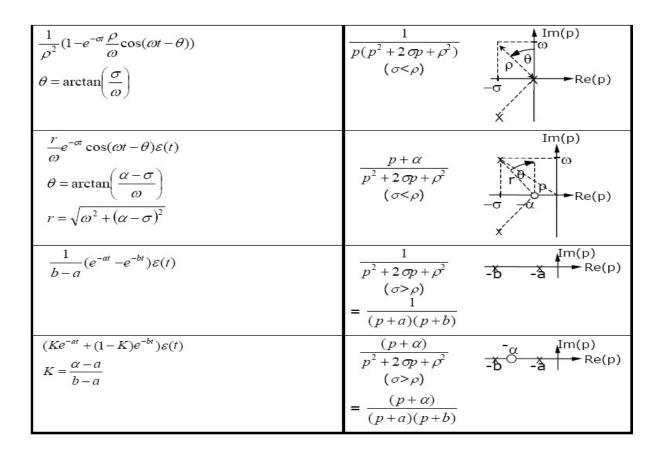
Simplify the following bloc scheme and give its closed loop transfer function H(p)



Annexes

Laplace Transforms

f(t)	F(p)	
<i>δ</i> (t)	1	Ni pôle ni zéro
$\varepsilon(t)$ $\begin{array}{c} & & & & & & \\ & & & & & \\ & & & & 1 \end{array}$	$\frac{1}{p}$	Im(p) Re(p)
ts(t)	$\frac{1}{p^2}$	Im(p) (2) Re(p)
$e^{-at} \varepsilon(t)$ $e^{-at} \varepsilon(t)$ $e^{-at} \varepsilon(t)$ $e^{-at} \varepsilon(t)$	$\frac{1}{p+a}$	Im(p) -a Re(p)
$t e^{-at}arepsilon(t)$	$\frac{1}{(p+a)^2}$	(2) Im(p) Re(p)
$\frac{1}{\omega}\sin(\omega t)\varepsilon(t)$	$\frac{1}{p^2 + \omega^2}$	Im(p) Χω ———Re(p) Χ—ω
$\cos(\omega t) \varepsilon(t)$	$\frac{p}{p^2 + \omega^2}$	X_{ω} $Re(p)$ X_{ω}
$\frac{1}{\omega^2}(1-\cos(\omega t))\varepsilon(t)$	$\frac{1}{p(p^2+\omega^2)}$	Im(p) ×ω Re(p) ×−ω
$\frac{1}{\omega}e^{-\sigma t}\sin(\omega t)\varepsilon(t)$	$\frac{1}{p^2 + 2\sigma p + \rho^2}$ $(\sigma < \rho)$	Im(p) φ Re(p)



Properties

$$\begin{split} L_I \left[af(t) + bg(t) \right] &= aF(p) + bG(p) \quad \text{(linėaritė)} \\ L_I \left[\frac{df(t)}{dt} \right] &= pF(p) - f(0_-) \quad \text{(dėrivėe)} \\ L_I \left[\int\limits_0^t f(t) dt \right] &= \frac{F(p)}{p} \quad \text{(intégrale)} \\ L_I \left[f(t-\tau) \right] &= e^{-p\tau} F(p) \quad \text{(retard temporel)} \\ L_I \left[e^{-\sigma t} f(t) \right] &= F(p+\sigma) \quad \text{(translation de la transformée)} \\ L_I \left[f(t) * g(t) \right] &= F(p) G(p) \quad \text{(convolution)} \\ \lim_{p \to \infty} pF(p) &= \lim_{t \to 0+} f(t) \quad \text{(théorème de la valeur initiale)} \\ \lim_{p \to 0} pF(p) &= \lim_{t \to \infty} f(t) \quad \text{(théorème de la valeur finale)} \\ &= (\text{à condition que ces limites existent)} \\ L_I \left[\sum_{k=0}^\infty f(t-kT)\varepsilon(t-kT) \right] &= \frac{F(p)}{1-e^{-pT}} \quad \text{(périodification)} \end{split}$$