UTBM-EE-A. Djerdir 11/01/2014

Examen Final : EL61&EL76 – A2013

Durée : 2 heures.

Documents : non autorisés sauf une feuille manuscrite de format A4.

## Etude d'un petit moteur synchrone à aimants permanents (MSAP) et de sa commande

On se propose d'étudier un MSAP triphasé de petite puissance. Son alimentation est autopilotée, c-à-d la tension (ou le courant) est imposée relativement à la position. L'équation de tension régissant l'évolution des grandeurs électromagnétiques dans chacune des trois phases du MSAP est la suivante (1) :

$$v = e + R \cdot i + L \cdot \frac{di}{dt} \tag{1}$$

Où, v, i, e, R et L sont respectivement la tension d'alimentation, le courant, la fem, la résistance et l'inductance cyclique d'une bobine d'induit de la machine. On rappelle que l'amplitude de la fem est proportionnelle à la vitesse du rotor.

L'équation (1) peut s'écrire sous la forme (2) ci-dessous :

$$v = n \left[ \frac{d\Phi(\theta)}{dt} + r \cdot ni(\theta) + \frac{1}{\Re} \cdot \frac{dni(\theta)}{dt} \right]$$
 (2)

Où,

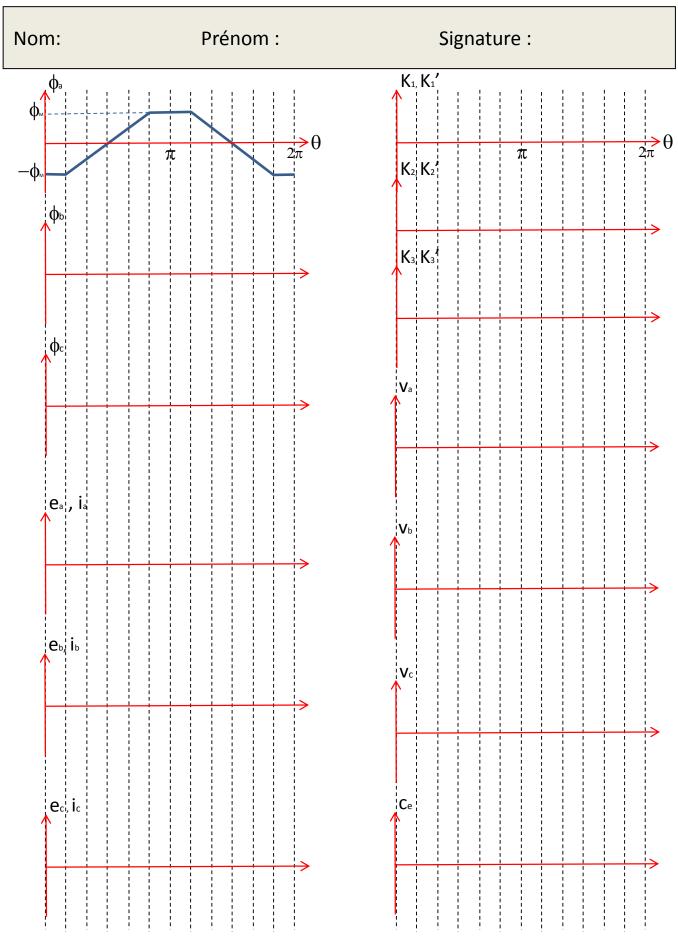
- n est le nombre de spires d'une bobine d'induit ;
- $\phi(\theta)$  est le flux inducteur fonction de la position angulaire électrique  $\theta = p\theta_m$  ( $\theta_m$  est l'angle mécanique entre le rotor et le stator et p est le nombre de paires de pôles de la machine), son amplitude est  $\phi_M$ , sa forme est supposée sinusoïdale ;
- r est homogène à une résistance et est appelée résistance spécifique ;
- R est la réactance du circuit magnétique équivalent de l'induit.
- ni(θ) représente les ampères-tours d'alimentation d'induit injectés qui sont fonction de la position angulaire.

Les valeurs numériques utiles pour les applications sont : p=2 ;  $\Re=5\cdot10^{\text{-5}}\text{H}^{\text{-1}}$  ;  $r=70\mu\Omega$  et  $\phi_{M}=30\mu\text{Wb}$ .

## Partie 1: Modélisation du MSAP

- 1. En partant des expressions (1) et (2) et en utilisant le principe des travaux virtuels, donner deux expressions pour le couple électromagnétique de la machine tournant à la vitesse  $\Omega$ .
- 2. Le bobinage d'induit est alimenté à l'aide d'un onduleur de tension à partir d'une batterie dont la tension est supposée constante et égale à U. Représenter cet ensemble convertisseur-machine en mettant en évidence les éléments essentiels du système.
- 3. On suppose que le flux φ(θ) est une fonction de la position telle qu'il est indiqué sur le document réponse. Compléter sur le document-réponse, les tracés des formes d'ondes des flux inducteurs des trois bobines statoriques φ<sub>a</sub>, φ<sub>b</sub> et φ<sub>c</sub>.

UTBM-EE-A. Djerdir 11/01/2014


- 4. Tracer sur le même document-réponse, les formes d'ondes des trois fcem (forces contre-électromotrices) de la machine (e<sub>a</sub>, e<sub>b</sub> et e<sub>c</sub>).
- 5. Donner l'expression de  $E_{max}$  (amplitude de la fcem) en fonction de p, n,  $\phi_M$  et  $\Omega$ .
- 6. Ecrire l'équation en nombres complexes qui relie les trois grandeurs  $\bar{I}$ ,  $\bar{V}$  et  $\bar{E}$  qui sont respectivement les notations complexes des harmoniques fondamentales des grandeurs instantanées i(t), v(t) et e(t).
- 7. Dessiner le schéma équivalent d'une phase d'induit du moteur en y faisant figurer, les paramètres R, L, Ī, V et Ē.
- 8. Tracer le diagramme de Fresnel (vectoriel) relatif au schéma équivalent précédent en choisissant la fcem comme référence orientée verticalement de bas en haut. On note  $\psi$  l'angle entre  $\overline{E}$  et  $\overline{I}$ . Préciser l'angle  $\phi$  entre  $\overline{I}$  et  $\overline{V}$  et représenter le flux total inducteur ( $\overline{\Phi}_t = n \cdot \overline{\Phi}$ )
- 9. Maintenant, on néglige l'effet de l'inductance d'induit (cas des petits MSAP). A partir de l'équation des tensions en régime permanent sinusoïdal, déterminer l'expression de l'amplitude des ampères-tours  $nI_{max}$  en fonction de :  $\Omega$ ,  $\phi_M$ , r,  $V_{max}$  et n, où  $V_{max}$  est la valeur maximale du fondamental de la tension d'une phase statorique.
- 10. Calculer la valeur numérique de nI<sub>max</sub> permettant de produire un couple de 3mNm.
- 11. Déterminer le nombre de spires nécessaires à l'obtention d'un couple moyen de 3mNm à la vitesse de 3000 tr/mn sous une tension égale à 12 V.

## Partie 2: Commande du MSAP

Les trois phases statoriques a, b et c du moteur précédent sont alimentées par un onduleur de tension dont la partie puissance inclue le bus continu U, les interrupteurs de puissance (K<sub>1</sub>, K<sub>1</sub>', K<sub>2</sub>, K<sub>2</sub>', K<sub>3</sub> et K<sub>3</sub>'). On adopte une commande du type 120° de l'onduleur.

- 12. Compléter sur le document-réponse les chronogrammes des fonctions de commande des interrupteurs  $K_m$  et  $K'_m$  où m=1,2,3.
- 13. Sur le même document-réponse, représenter les formes d'onde des tensions de phase de la machine (v<sub>a</sub>, v<sub>b</sub> et v<sub>c</sub>).
- 14. Donner l'équation différentielle régissant l'évolution du courant dans cette phase. En déduire l'expression de ce courant (i<sub>a</sub>(t)) en supposant que la constante de temps mécanique est beaucoup plus grande de la constante de temps électrique.
- 15. Sur le même document-réponse, tracer les formes d'onde des courants statoriques (i<sub>a</sub>, i<sub>b</sub> et i<sub>c</sub>).
- 16. En déduire le tracé de la forme d'onde du couple électromagnétique c<sub>e</sub>(t).
- 17. Calculer la valeur moyenne du couple électromagnétique Ce.
- 18. Comment peut-on réguler cette valeur moyenne de couple?
- 19. Proposer un schéma de commande en couple à travers un schéma synoptique pertinent\* accompagné d'explications.
- 20. Proposer un schéma de commande scalaire de vitesse à travers un schéma synoptique pertinent accompagné d'explications.
- 21. Proposer un schéma de simulation Simulink de l'ensemble alimentation MSAP commande scalaire de vitesse proposée.

<sup>\*)</sup> Pertinent = comportant tous les composants et toutes fonctions principales.

