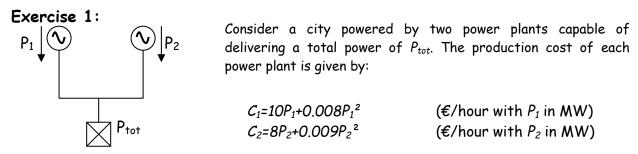
FINAL Exam

Autumn 2017

Duration: 90 minutes

- It is advisable to take knowledge of the entire text before answering any question.

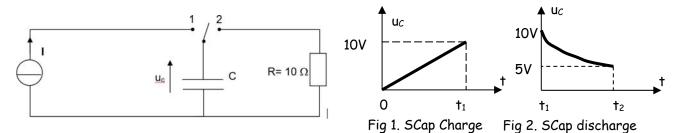

- Applicants must respect the used notation and specify in each case the question number.

- Most attention will be given to the clarity of writing, presentation, the diagram and the presence of measurement unit

Results will be put in frames

Exercises are independent

Documentation: An A4 double face is authorized, Calculator authorized, phone forbidden



1) Give the total production cost function and the Hamiltonian function H.

- 2) Determine, as function of P_{tot} , the optimal values of P_1 and P_2 which minimize the total production cost (by solving the Hamilton canonical equations).
- 3) Determine, as function of P_{tot} , the incremental cost of each power plant and the production cost.

Exercise 2:

Supercapacitors (SCap) of C=3200F are used in the following application:

In position 1 (from time 0 to t1), the SCap are charged at constant current I = 200A, Fig.1 is obtained:

1) How many SCap are put in serial in this setup to form the total capacitance C.

2) Calculate the time t₁ corresponding to SCap voltage of 10V.

3) Calculate the energy *E*_{received} stored in SCap during position 1.

In position 2 (from time t_1 to t_2), SCap are being discharged in the resistance R (Fig. 2). The discharge

equation is of the form $u_{C}=Be^{-(t-t_{1})/ au}$

- 4) Determine the constants B, τ and t_2 .
- 5) Calculate the energy (Er) dissipated as Joule effect in R.
- 6) Deduce the average power (Pr) dissipated as Joule effect in R.