IN41: Traitement du Signal

Examen Final

Printemps 2008

Les différents exercices sont indépendants. Le sujets est plutôt long, essayez donc de répondre en premier aux questions que vous trouvez faciles ou, tout au plus, moins difficiles ! !.

Essayez tout de même de respecter l'ordre des questions. Le barème est donné à titre indicatif.

1 Question de Cours (2 pts)

Donnez le principe général de la modulation. Quelles sont les différences entre la modulation d'amplitude et les modulations angulaires.

2 Exercice: Calcul des sorties d'un filtre (3 pts)

On considère le filtre causal de réponse en fréquence $H(f) = +j12\pi f$. Déterminez la sortie y(t) du filtre pour les entrées suivantes en vous aidant de la table fournie en annexe :

- $-x(t) = e^{jt}$ $-x(t) = sin(2\pi f_0 t) \cdot u(t)$ $-X(f) = \frac{1}{j2\pi f_1(2\pi f_1 + 8)}$ $-X(f) = \frac{1}{j2\pi f_1 + 4}$

3 Exercice: Réponse à un sinus hyperbolique (3 pts)

Soit le Système LIT défini par la réponse impulsionnelle suivante :

$$h(t) = \frac{\sin(4\pi f_0 t)}{t} \tag{1}$$

Calculer la réponse de ce système au signal suivant :

$$x(t) = \frac{\sin(2\pi f_0 t)}{t} \tag{2}$$

4 Problème : Etude et Synthèse de Filtres numériques (12 pts)

Soit le filtre numérique donné par la relation suivante :

$$H(z) = \frac{1 - z^{-1}}{(2 + \alpha)(1 + \alpha) + 2(\alpha^2 - 2)z^{-1} + (\alpha - 2)(\alpha - 1)z^{-2}}$$
(3)

4.1 Travail sur le filtre numérique

- 1. Donnez l'équation aux différences à coefficients constants de ce filtre.
- 2. S'agit-il d'un filtre à réponse impulsionnelle finie ou infinie? Pourquoi?
- 3. Calculez les pôles et les zéros de ce filtre. $0 < \alpha \ll 1$
- 4. Ce filtre est-il causal et stable?

4.2 Filtre analogique correspondant

- 1. Exprimez le dénominateur sous la forme d'un polynôme en 1.
- 2. Posez $s=\frac{2}{a},\frac{1-x^{-1}}{1+x^{-1}}$ et déterminez de quel filtre analogique est issu ce filtre numérique (donnez la fonction de transfert du filtre analogique). Par quelle méthode a-t-il été synthétisé?
- 3. Le filtre analogique correspondant est-il causal et stable?
- 4. Donnez sa réponse implusionnelle.