
LP2A Written Exam
Friday April 30th, 2024

Duration 1h30
No documents

You must answer on the subject !! Other type of paper will be refused

Exercise #0 Back to the lectures (4 points)

Question#1: What are the 4 pillars of OOP?

Question#2: What is the purpose of interfaces? How to write a class which
implements an interface in java? How many interfaces a class can implement?

NOM Prénom Signature

Exercise #1 What is appearing on the screen? (8 points)

Question #1: Analyse the following code and draw the associated class diagram.

Question #2: There is an error in the code. Can you propose corrections? You can
use the name of the class and the line numbers to explain where are the errors.

Question#3: After the correction what this program is printing on the screen?

——

Exercise #2 It reminds me something (8 points)

We want to store students' information into an ordered data structure which allows
to optimize the research time. One of the good way to do this is to use the TreeSets
(cf. Javadoc description below).

Question #1: Create a Student class with two attributes: name (String) and age (int).
Add a constructor to initialize these attributes and a toString method to display the
student’s information.

Question #2: Create an AgeComparator class that implements the
interface: Comparator<Student>. Define the compare method to compare two
students based on their age.

Question #3: Create a main class using a TreeSet<Student> created by passing an
instance of AgeComparator to the constructor. Add a few students to
the TreeSet and print them out.

Question #4: We can avoid to use a comparator if the Student class is implementing
the Comparable interface. Explain what modifications, we need to make it work this
way.

public interface Comparable<T>

This interface imposes a total ordering on the objects of each class that
implements it. This ordering is referred to as the class's natural ordering, and
the class's compareTo method is referred to as its natural comparison
method.
Lists (and arrays) of objects that implement this interface can be sorted
automatically by Collections.sort (and Arrays.sort). Objects that implement
this interface can be used as keys in a sorted map or as elements in a sorted
set, without the need to specify a comparator.
The natural ordering for a class C is said to be consistent with equals if and
only if e1.compareTo(e2) == 0 has the same boolean value as e1.equals(e2)
for every e1 and e2 of class C. Note that null is not an instance of any class,
and e.compareTo(null) should throw a NullPointerException even though
e.equals(null) returns false.

https://docs.oracle.com/javase/8/docs/api/java/util/Collections.html#sort-java.util.List-
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#sort-java.lang.Object:A-
https://docs.oracle.com/javase/8/docs/api/java/util/SortedMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/SortedSet.html
https://docs.oracle.com/javase/8/docs/api/java/util/SortedSet.html
https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html

public class TreeSet<E>

Type Parameters:

E - the type of elements maintained by this set

All Implemented Interfaces:

Serializable, Cloneable, Iterable<E>, Collection<E>,
NavigableSet<E>, Set<E>, SortedSet<E>

The elements are ordered using their natural ordering, or by a
Comparator provided at set creation time, depending on which
constructor is used.

TreeSet(Comparator<? super E> comparator)  
Constructs a new, empty tree set, sorted according to the
specified comparator.

boolean add(E e)  
Adds the specified element to this set if it is not already
present.

E ceiling(E e)  
Returns the least element in this set greater than or equal to the
given element, or null if there is no such element.

E floor(E e)  
Returns the greatest element in this set less than or equal to the
given element, or null if there is no such element.

E higher(E e)  
Returns the least element in this set strictly greater than the
given element, or null if there is no such element.

E lower(E e)  
Returns the greatest element in this set strictly less than the
given element, or null if there is no such element.

SortedSet<E> subSet(E fromElement, boolean fromInclusive, E
toElement,  
boolean toInclusive)  
Returns a view of the portion of this set whose elements range
from fromElement to toElement.

SortedSet<E> subSet(E fromElement,E toElement)  
Returns a view of the portion of this set whose elements range
from fromElement, inclusive, to toElement, exclusive.

SortedSet<E> tailSet(E fromElement)  
Returns a view of the portion of this set whose elements are
greater than or equal to fromElement.

public interface Comparator<T>

A comparison function, which imposes a total ordering on some
collection of objects. Comparators can be passed to a sort method
(such as Collections.sort or Arrays.sort) to allow precise control
over the sort order. Comparators can also be used to control the
order of certain data structures (such as sorted sets or sorted
maps), or to provide an ordering for collections of objects that
don't have a natural ordering.

int compare(T o1, T o2)

Compares its two arguments for order. Returns a negative integer,
zero, or a positive integer as the first argument is less than,
equal to, or greater than the second.

