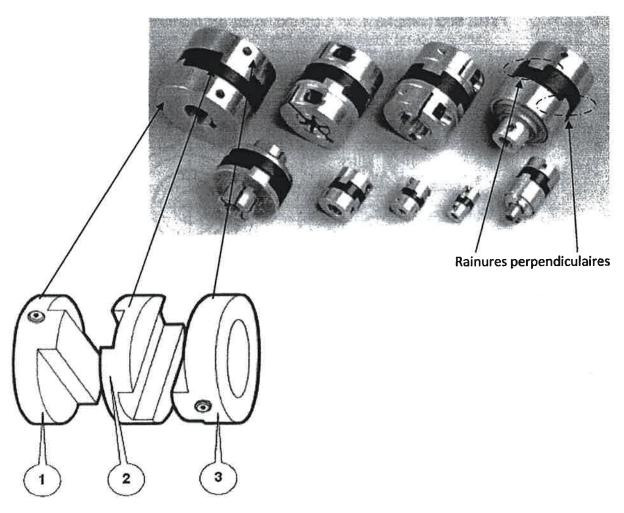

Automne 2015

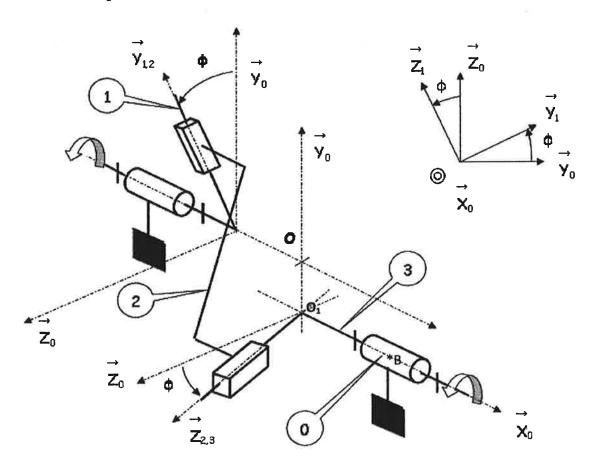


Durée: 2 h

Document autorisé : Seule une page manuscrite est autorisée


Dossiers à rendre :

Dossier A: DR1 et DR2


Dossier B: uniquement DR3

## Première partie : Joint de Oldham (12 points)

La photo, la vue éclatée et le schéma cinématique ci-dessous représentent un joint de transmission de type « Oldham ». L'objectif de celui-ci est de transmettre une puissance entre deux arbres parallèles mais non alignés. Il est constitué de deux couronnes 1 et 3, solidaires par pincement de leur arbre respectif, munies de languettes venant coulisser dans des rainures perpendiculaires exécutées dans la couronne intermédiaire 2 (en noire sur les photos)



### Schéma cinématique :



#### Paramétrage:

Soit bo la base  $(\vec{x}_o \vec{y}_o \vec{z}_o)$  lié au référentiel galiléen  $Ro(O, \vec{x}_o \vec{y}_o \vec{z}_o)$  attaché au bâti 0;

Soit  $b_1$  la base  $(\vec{x}_o \vec{y}_1 \vec{z}_1)$  lié à l'arbre 1, on repère l'orientation de 1 par rapport au bâti 0 par l'angle  $\Phi(\vec{y}_o \vec{y}_1) = (\vec{z}_o \vec{z}_1)$ ; (voir figure de calculs ci-dessus)

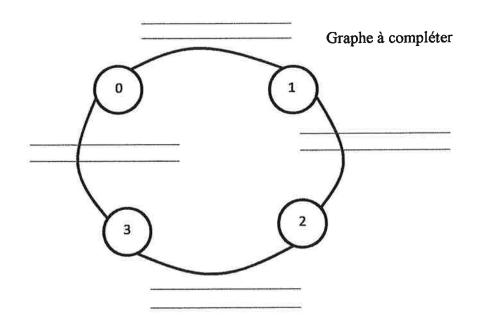
Soit  $b_2$  la base  $(\vec{x}_0\vec{y}_2\vec{z}_2)$  lié à 2 avec  $\vec{y}_2$  confondu avec  $\vec{y}_1$  d'où l'axe  $\vec{y}_{12}$  sur le schéma cinématique

Soit  $b_3$  la base  $(\vec{x}_0\vec{y}_3\vec{z}_3)$  lié à 3 avec  $\vec{z}_3$  confondu avec  $\vec{z}_2$ d'où l'axe  $\vec{z}_{23}$  sur le schéma cinématique

De plus nous avons les axes  $\vec{y}_{12}$  et  $\vec{z}_{23}$  normaux par construction.

#### Données:

 $\overrightarrow{O_1O} = e \ \overrightarrow{y}_0$  avec e : l'entr'axe (décalage) entre les arbres 1 et 3 ;


 $\overrightarrow{O_1B}=d\ \vec{x}_0\ \ {\rm avec}\ d$  : déport de la liaison L $_{03}$  /Ro.

#### Travail à effectuer :

- 1°) Compléter le graphe des liaisons du document-réponses 1, DR1
- 2°) Compléter les torseurs cinématiques du DR1
- 3°) Ecrire les équations cinématiques sur DR1
- 4°) En déduire la mobilité m ainsi que le degré d'hyperstatisme h du mécanisme; les écrire sur DR2
- 5°) le joint de Oldham est-il homocinétique ? Répondre sur DR2.

On veut rendre le mécanisme isostatique ; pour cela on se propose de remplacer la liaison  $L_{03}$  actuelle par une liaison linéaire annulaire de centre B et d'axe  $(B,\vec{x}_0)$ 

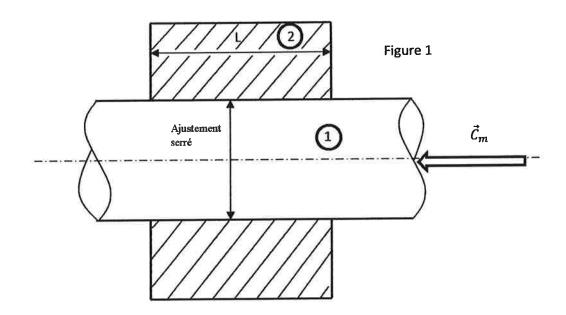
- 6°) **Donner** l'expression du nouveau torseur cinématique de cette liaison. **Compléter** le document DR2.
- 7°) En déduire les nouvelles équations cinématiques. Les écrire sur DR2
- 8°) **Déterminer** les nouvelles valeurs de la mobilité et du degré d'hyperstatisme. **Les écrire** sur DR2 et **conclure** quant à notre choix de cette nouvelle liaison.



Torseurs cinématiques à compléter :

Ecriture des équations cinématiques :

| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |


Document réponses 1

NOM:

| Mobilité: m =                                                                                                                                    |                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Degré d'hyperstatisme : h =                                                                                                                      |                                                                                            |
| Le joint de Oldham est-il homocinétique ? Justifiez.                                                                                             |                                                                                            |
| Expression du nouveau torseur cinématique :                                                                                                      |                                                                                            |
| •                                                                                                                                                |                                                                                            |
| $\{v_{L_{03}}\}_{B} = \{\vec{z}  \vec{z}_{0,\vec{y}_{1},\vec{z}_{1}}\} \rightarrow \{v_{L_{03}}\}_{0} = \{\vec{z}_{0,\vec{y}_{1},\vec{z}_{1}}\}$ | $\left. \begin{array}{c} -\\ -\\ \end{array} \right\}_{(\vec{x}_0, \vec{y}_1, \vec{z}_1)}$ |
| Expression des nouvelles équations cinématiques :                                                                                                | THE PRINCIPAL CONTRACTOR (                                                                 |
|                                                                                                                                                  |                                                                                            |
|                                                                                                                                                  |                                                                                            |
|                                                                                                                                                  |                                                                                            |
| Nouvelle mobilité : m =                                                                                                                          |                                                                                            |
| Nouveau degré d'hyperstatisme : h =                                                                                                              | -                                                                                          |
| Conclusion:                                                                                                                                      |                                                                                            |
|                                                                                                                                                  |                                                                                            |
| Document réponses 2                                                                                                                              | NOM:                                                                                       |

# Deuxième partie: Transmission de couple par frettage (8 points)

La figure plane ci-dessous représente l'assemblage par frettage (ajustement serré) de l'arbre 1 avec un manchon épais 2.



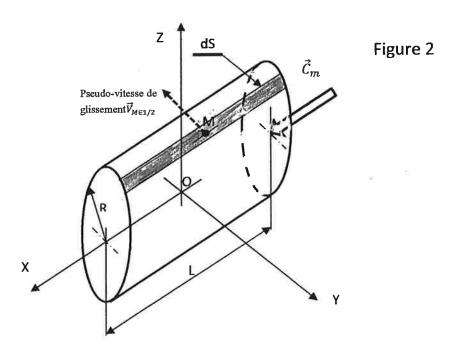
L'objectif de cette étude est de déterminer le couple moteur maximal transmissible par l'arbre 1 au manchon 2. Pour cela on isole le tronçon de l'arbre 1 en contact avec le manchon 2 et l'on recherche le torseur des efforts transmissible de 2 sur 1, soit : $\{T_{2\rightarrow 1}\}_o = \{\vec{R}_{2\rightarrow 1} \}$ ; on vérifie aisément que  $\vec{R}_{2\rightarrow 1} = \vec{0}$ ; il ne vous reste donc qu'à déterminer  $\vec{M}_{o,2\rightarrow 1}$ .

## Travail à effectuer :

- 9°) Choisir, en entourant la bonne proposition, si l'on est dans le cas d'une étude liée à l'adhérence ou au frottement. Justifiez puis citer les conjectures émises afin de résoudre notre problème; Répondre sur DR3.
- 10°) La figure 2 page 7 représente la surface de contact en perspective entre l'arbre 1 et le manchon 2. Compléter la figure plane de DR3 afin de positionner les vecteurs unitaires  $\vec{n}$  et  $\vec{t}$ .

11°) Exprimer  $\vec{n}$  et  $\vec{t}$  dans la base  $(\vec{x}\vec{y}\vec{z})$ ; répondre sur DR3

- 12°) Donner l'expression de dS. L'écrire sur DR3.
- 13°) On émet l'hypothèse que la densité de force normale est *constante* et égale à **po** sur toute la surface de contact, **déterminer** puis **exprimer** sur DR3 :


$$\{T_{2\to 1}\}_o = \left\{ \vec{R}_{2\to 1} \atop \vec{M}_{o,2\to 1} \right\}$$
 en fonction des paramètres : po, f, R et Sc avec

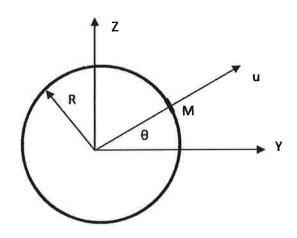
Sc : surface de contact entre l'arbre 1 et le manchon 2.

14°) Application numérique: la théorie des parois épaisses (qui n'est pas au programme de MQ21) nous permet d'obtenir, en fonction de l'ajustement du frettage, la densité de force normale **po** exercée au contact de l'arbre et de l'alésage.

Pour les valeurs suivantes : po =  $390.10^5$  Pa ; f = 0,15 ; R =  $25.10^{-3}$  m et

L= 0,05 m; calculer le couple transmissible maximal; l'écrire sur DR3




## MQ 21-Transmission des efforts en mécanique

Proposition à entourer : adhérence ou frottement

Justification : \_\_\_\_\_\_\_

Conjectures émises : \_\_\_\_\_\_\_

Figure à compléter : mise en place de  $\vec{n}$  et  $\vec{t}$ 



Expression  $de\vec{n}$  et  $\vec{t}$  dans la base  $(\vec{x}\vec{y}\vec{z})$ :

 $\vec{n} =$ 

 $\vec{t} =$ 

Expression deds:

$$\{T_{2\to 1}\}_o = \left\{ \vec{R}_{2\to 1} = \vec{0} \\ \vec{M}_{o,2\to 1} = \underline{\qquad} \right\}$$

Couple maximal transmissible :  $\|\vec{M}_{0,2\rightarrow 1}\| =$ \_\_\_\_\_\_

Document réponses 3

NOM: