

Date: Lundi 20 Juin 2016

UV:	MQ22	Semestre:	AUTON	MNE	PRINTEMPS	
EXAMI	EN:	MEDIAN	FINAL			
NOM :		Préno	om:		Né(e) le :	
DEPAR	TEMENT	Σ:				
NIVEAU:			F	ILIERE :		

Le sujet est composé de 3 exercices totalement indépendants.

TOUS LES RESULTATS SERONT JUSTIFIES

Passerelle Sacré-Cœur de Coaticook (Québec)

Signature:

Feuille *A4* manuscrite et calculatrice autorisées

Exercice n°1

On considère la poutre (ABC) parfaitement encastrée en C avec un bâti fixe. Initialement, la poutre est droite, horizontale et non chargée.

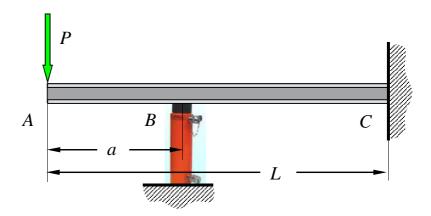
On applique une charge concentrée P à son extrémité libre de centre A. Le point A se déplace alors vers le bas.

On utilise un vérin hydraulique, placé au point B, pour soulever la poutre et ramener le point A dans sa position initiale.

On se propose de déterminer :

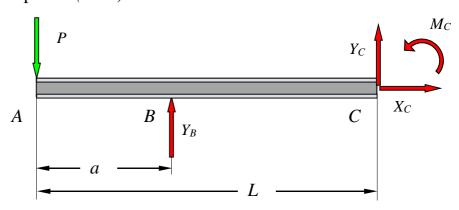
- L'effort appliqué au point B par le vérin sur la poutre,
- De combien le vérin hydraulique doit soulever la poutre en *B*.

La poutre (ABC) est réalisée avec un profilé W 5*5*16 (Poutrelles américaines à larges ailes) de moment quadratique I_{GZ} noté I, en acier de module d'Young E.



1- Déterminer le degré d'hyperstaticité du problème

11- On isole la poutre (ABC).



12- Ecrire les trois équations d'équilibre de la poutre (ABC)

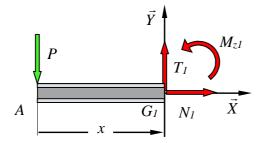
(Equation de moment en C)

13- On décide de garder Y_B comme inconnue hyperstatique Exprimer les composantes des actions de liaisons suivantes

$M_C =$	$X_C =$	$Y_C =$
---------	---------	---------

- 2- Déterminer les éléments de réduction du torseur des forces de cohésion dans la poutre (ABC)
 - 21- Déterminer l'expression du moment de flexion M_{z1} en G_1 (centre de la section droite du profilé de la partie (AB) de la poutre).

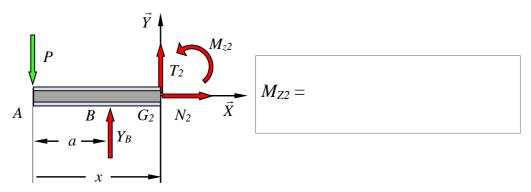
Avec:
$$\overrightarrow{AG_1} = x \ \overrightarrow{X} \quad 0 \le x \le a$$



$$M_{ZI} =$$

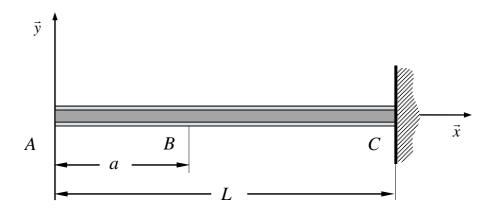
22- Déterminer l'expression du moment de flexion M_{z2} en G_2 (centre de la section droite du profilé de la partie (BC) de la poutre).

Avec:
$$\overrightarrow{AG_2} = x \ \overrightarrow{X} \quad a \le x \le L$$



3- On se propose de déterminer le déplacement d_B du centre B de la section de la poutre sous l'action du vérin hydraulique et de lever l'hyperstaticité du problème à l'aide de l'équation de la déformée de la ligne moyenne de la poutre (ABC).

Cette déformée est calculée dans le repère : $[A; (\vec{x}, \vec{y})]$



31- Equation $y_l(x)$ de la déformée avec : $0 \le x \le a$ On note C_l et C_2 les deux constantes d'intégration

$$EI_2 y^{"}_1 =$$

$$EI_{2}$$
 $y'_{1} =$

$$EI_2 y_1 =$$

32-	Equation $y_2(x)$ de la déformée avec : $a \le x \le L$ On note C_3 et C_4 les deux constantes d'intégration					
	$EI_2 y''_2 =$					
	EI_2 $y'_2 =$					
	$EI_2 \ y_2 =$					
33-	Conditions aux	Limites (CL)			
	- Point A (CL 1)				
	- Point <i>B</i> (0	CL 2)				
	- Point <i>B</i> (0	CL 3)				
	- Point <i>C</i> (0	CL 4) CL 5)				
34-	Ecrire (sans les limites	résoudre) les conséquence	s des conditions aux		
	- (CL 1)					
	- (CL 2)					
	- (CL 3)					
	- (CL 4)					
	- (CL 5)					

35- Les conditions aux limites précédentes ont permis de calculer les quatre constantes et l'inconnue hyperstatique Y_B

$$C_1 = C_3 = \frac{aL^2P}{2(2L+a)}$$
 $C_2 = C_4 = 0$ $Y_B = \frac{2L^3P}{(L-a)^2(2L+a)}$

36- En déduire le déplacement du d_B du point B

$$d_B =$$

37- Application numérique

On donne:
$$P = 22.5 \text{ kN}, a = 1.25 \text{ m}, L = 3.10 \text{ m}, I_{GZ} = 885.5 \text{ cm}^4, E = 210 \text{ GPa}$$

- Effort Y_B du vérin sur la poutre

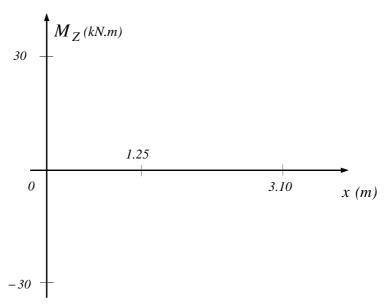
$$Y_B = N$$

- Soulèvement de la poutre (déplacement du point *B*)

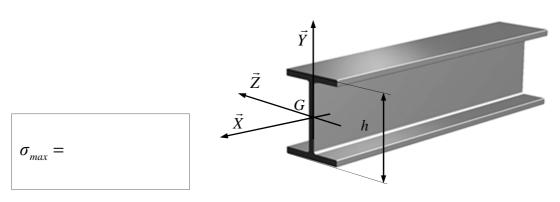
$$d_B = mm$$

4- Etude des contraintes

41- Tracer le diagramme du moment de flexion M_Z



- 42- En déduire la section la plus sollicitée
- 43- Donner l'expression de la contrainte normale maximale σ_{max} et indiquer sur la figure ci-dessous le ou les points qui supportent cette contrainte normale maximale σ_{max} .



44- Calculer la contrainte normale maximale σ_{max} . On donne : $h = 127 \ mm$

 $\sigma_{max} = MPa$

45- Calculer la contrainte équivalente $\sigma_{\acute{e}qui}$ à l'aide du critère de Tresca

 $\sigma_{\acute{e}qui} = MPa$

46- Calculer le coefficient de sécurité à la limite élastique n_e . On donne : $\sigma_e = 355 \ MPa$

 $n_e =$

Exercice n°2

On considère une poutre treillis constituée d'une poutre droite (ACB), d'une **entretoise indéformable** placée en son milieu C et de quatre tirants identiques, un de chaque côté de la poutre entre A et D et un de chaque côté de la poutre entre B et D.

Les deux tirants (AD) et les deux tirants (BD), sont des barres droites en acier de module d'Young E, de section circulaire d'aire S_I , de longueur L_I , en liaisons pivot parfaites avec l'entretoise en D et en liaisons pivot parfaites avec la poutre (ACB) respectivement en A et en B.

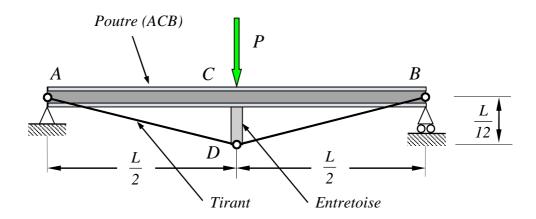
La poutre (ACB), de longueur L, est réalisée avec un profilé W 18*11*119 (Poutrelles américaines à larges ailes) de moment quadratique I_{GZ} noté I_2 , en acier de module d'Young E.

La poutre (ACB) est en liaison pivot parfaite en A et en liaison contact ponctuel parfait en B avec un bâti parfaitement rigide.

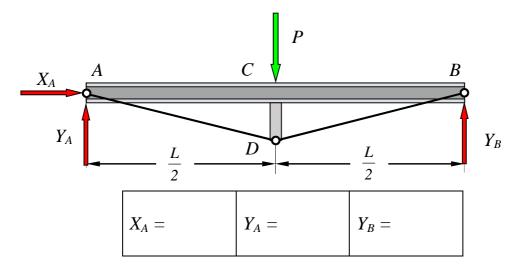
Le poids propre des quatre tirants (AD) et (BD) et de la poutre (ACB) est négligeable devant le chargement P appliqué.

Avant application de la charge *P* sur la poutre, les quatre tirants sont ni tendus ni comprimés.

On retient pour les calculs l'effort normal N_1 dans les tirants (AD) et (BD) et le moment de flexion M_{Z_2} dans la poutre (ACB).



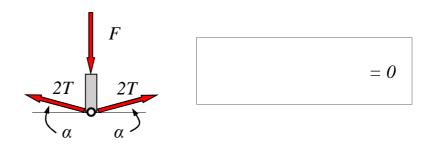
1- Déterminer les actions de liaison avec le bâti en *A* et *B* On isole la poutre treillis.



2- Déterminer le degré d'hyperstaticité du problème On isole l'entretoise.

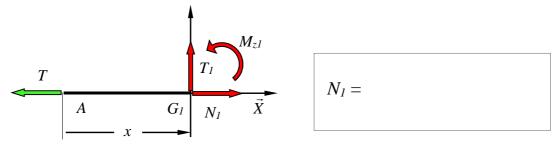
On note F l'action de la poutre (ACB) et T l'action de chacun des quatre tirants sur l'entretoise.

Ecrire l'équation d'équilibre de l'entretoise



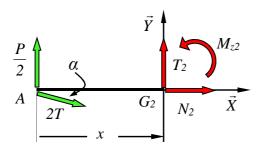
On décide de garder T comme inconnue hyperstatique

- 3- Déterminer les éléments de réduction du torseur des forces de cohésion dans les tirants (AD) et (BD) et dans la poutre (ACB)
 - 31- Déterminer l'expression de l'effort normal N_I dans la section droite de centre G_I d'un tirant. Avec : $0 \le x \le L_I$



32- Déterminer l'expression du moment de flexion M_{z2} en G_2 (centre de la section droite du profilé de la partie (AC) de la poutre). **Du fait de la symétrie** on étudie seulement la moitié gauche de la poutre.

Avec: $\overrightarrow{AG_2} = x \vec{X}$ $0 \le x \le \frac{L}{2}$



 $M_{Z2} =$

4- Energie de déformation élastique U de la poutre treillis Calculer l'énergie de déformation élastique U de la poutre treillis, somme des énergies de déformation élastique des quatre tirants (AD) et (BD) et de la poutre (ACB).

U =

5- Calcul de l'inconnu (Vous pouvez passe	• -	-	7 sans répond	dre à celle-ci)
51- Théorème u	ıtilisé :		Expression :	
52- Expression	de l'incon	nue hyperstatique	eT	
		T =		
6- En déduire l'expression de l'action <i>F</i> de la poutre sur l'entretoise				
		F =		
7- On se propose de calculer le déplacement d_C du centre C de la section centrale de la poutre (ACB) à l'aide du théorème de Castigliano. On notera impérativement $T = \lambda P$				
	d _C =			

8- Application numérique

On donne : diamètre des tirants (AD) et (BD) $d_1 = 40 \text{ mm}$, profilé de la poutre (ACB) W 18*11*119, h = 482 mm, $I_2 = 91040 \text{ cm}^4$, E = 210 GPa, $\sigma_e = 355 \text{ MPa}$, L = 11 m, P = 89 kN, $\lambda = 0.647 \text{ SI}$

81- Calculer $\sin \alpha$ et $\cos \alpha$

$$\sin \alpha = \cos \alpha =$$

82- Calculer l'effort de traction T dans les tirants

$$T = N$$

83- Calculer l'effort F de contact entre l'entretoise et la poutre

$$F = N$$

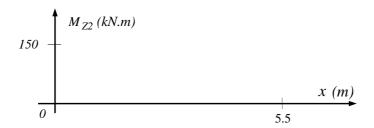
84- Calculer le déplacement d_C de la section de centre C de la poutre

$$d_C = mm$$

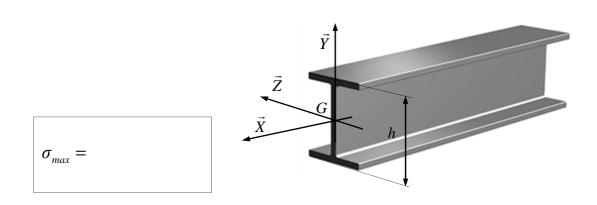
- 9- Etude des contraintes
 - 91- Calculer la contrainte normale σ_I dans chacun des quatre tirants

$$\sigma_I = MPa$$

92- Tracer le diagramme du moment de flexion M_{Z2} dans la moitié gauche (AC) de la poutre



- 93- En déduire la section la plus sollicitée
- 94- Donner l'expression de la contrainte normale maximale σ_{max} et indiquer sur la figure ci-dessous le ou les points qui supportent cette contrainte normale maximale σ_{max} .



95- Calculer la contrainte normale maximale σ_{max} .

$$\sigma_{max} = MPa$$

Exercice n°3

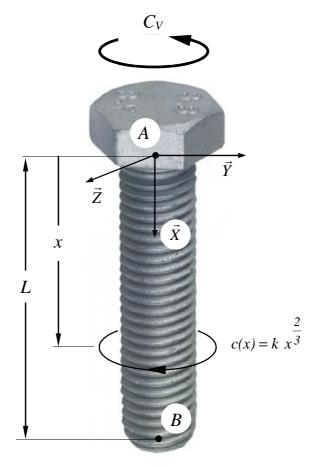
On considère une vis d'assemblage H - M8 - 50

Pour la visser on applique sur sa tête hexagonale, à l'aide d'une clé à pipe, un couple $\vec{C}_V = -C_V \ \vec{X}$.

Les actions du taraudage de la pièce sur la tige AB de la vis sont représentées par un couple réparti $\vec{c}(x) = c(x) \vec{X}$ (en N.m/m) qui peut être exprimé par la relation $c(x) = k x^{\frac{2}{3}}$ (x en m).

La tige AB de la vis est un cylindre de section circulaire, de diamètre d et de longueur L.

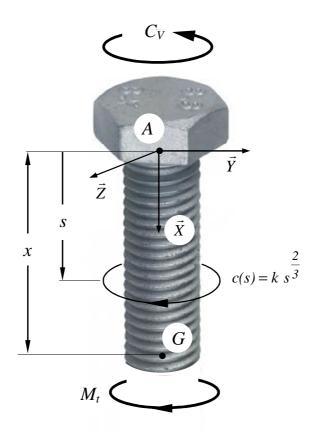
On note I_{GX} le moment quadratique polaire de la section droite de la tige par rapport à l'axe (G, \vec{X})



1- Déterminer la constante k. On isole la vis H. Ecrire l'équation de moment en projection sur l'axe (A, \vec{X}) des actions extérieures à la vis H.

(en fonction de C_V et L)

2- Déterminer le moment de torsion dans une section droite de centre G (centre de la section droite de la tige de la vis (AB)). Avec : $0 \le s \le x$



$$M_t =$$

(en fonction de C_V , k et x)

3- Déterminer l'angle de torsion de la vis <i>H</i> .	α_{AB} entre les deux extrémités A et B de la tige
	$\alpha_{AB} =$
4- Calculer la contrainte de cisa	illement maximale $ au_{max}$ dans la tarière
✓ Déterminer la section la plus sollicitée	de tige de la vis
✓ Calculer la contrainte	cisaillement maximale τ_{max} dans cette section
	$ au_{max} =$

5- Application numérique

Rappel:
$$I_{GX} = \frac{\pi d^4}{32}$$

On donne :
$$d = 8 mm$$
, $L = 50 mm$, $G = 75 GPa$, $C_V = 50 N.m$

\checkmark Constante k

$$k = SI$$

✓ Moment quadratique polaire I_{GX}

$$I_{GX} = cm^4$$

✓ Angle de torsion α_{AB}

$$\alpha_{AB}$$
 = $^{\circ}$

\checkmark Contrainte de cisaillement maximale τ_{max}

$$\tau_{max} = MPa$$