MQ46 Final A2019 - 2 heures

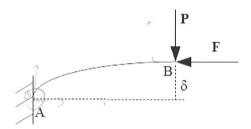
calculatrice non autorisée

EXERCICE 1 et 2 SUR COPIE 1 et EXERCICE 3 et 4 COPIE 2

Exercice 1 : Flambage - # points

Soit la poutre AB de longueur L, encastrée en A et soumise en son extrémité B à un effort normal F et à un effort tranchant P.

La poutre a un moment quadratique I_{Gz} et un module d'Young E, supposés constants. On note δ la flèche du point B.



- 1. Donner le degré d'hyperstatisme de cette structure.
- 2. Donner l'expression du moment fléchissant le long de la poutre.
- 3. Montrer que l'expression de la flèche tout le long de la poutre s'écrit :

$$y(x) = \left(\frac{PL}{F} - \delta\right)\cos(\omega x) - \frac{P}{F\omega}\sin(\omega x) - \frac{P}{F}(L - x) + \delta \text{ avec } \omega^2 = \frac{F}{EI}$$

4. Utiliser la condition limite $y(L) = \delta$ et montrer que :

$$\delta = -\frac{PL^3}{EI} \left(\frac{\tan(\omega L) - \omega L}{(\omega L)^3} \right) \text{ avec } \omega^2 = \frac{F}{EI}$$

- 5. Pour P = 0, calculer la charge critique correspondante.
- 6. Pour F petite donc ωL petit, en utilisant un développement limité de la tangente $\tan(\omega L)$ calculer la flèche en B. On rappelle que le DL au voisinage de 0 de $\tan(X)$ est :

$$\tan(X) = X + \frac{1}{3}X^3$$

Exercice 2: Analyse Limite - 6 points

Soit une poutre AB, de longueur L et de section circulaire creuse avec un rayon interne $R_i = R$ et un rayon externe $R_c = 2R$. La structure est encastrée en A et subit un moment de torsion M_t au point B. On suppose la structure homogène, isotrope, élastique parfaitement plastique de limite élastique τ_Y

- 1. Faire un dessin illustrant ce problème.
- 2. Donner l'expression de la contrainte de torsion en fonction de M_t et de R dans la phase élastique.
- 3. Donner l'expression du moment de torsion M_Y en début d'écoulement plastique en fonction de τ_Y et de R.
- 4. Donner l'expression du moment de torsion limite M_L quand toute la structure est entrée en plasticité, en fonction de τ_Y et de R.
- 5. Calculer la réserve de plasticité soit M_L/M_Y .
- 6. Compléter la phrase : "La rérve de plasticité d'une poutre de section creuse est plus que la rérve de plasticité d'une poutre de section pleine".

Partie 2 : Examen Final MQ46 Jeudi 16 janvier 2020

Exercice 3 : Calcul d'un tourillon d'extrémité.

5 points

On se propose d'étudier un tourillon d'extrémité d'un arbre à cames de moteur thermique. Le tourillon est un élément de guidage (rep. A) en rotation comme schématisé sur les dessins cidessous :

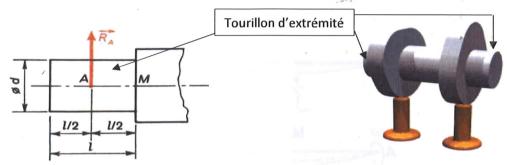


Figure 1: schéma de chargement équivalent

Outre la condition de résistance, on doit aussi s'assurer que les conditions de graissage et de limitation en température sont respectées.

1_ Condition de résistance.

La section dangereuse se situe en M et on admettra que l'action de l'appui $\overrightarrow{R_A}$ est appliquée au milieu de la portée. (On considérera uniquement le moment fléchissant)

2_ Condition de graissage.

On écrit que la pression, rapportée à la surface diamétrale ld, est au plus égale à une limite définie à partir de conditions technologiques.

3_ Condition de limitation de température.

On écrit que la quantité de chaleur dégagée par seconde et par m^2 de surface diamétrale ou, ce qui est la même chose, que la puissance absorbée par le frottement par unité de surface diamétrale exprimée en W/m^2 n'excède pas une valeur limite fixée.

Travail demandé:

En tenant compte des 3 conditions (résistance, graissage et limitation de température) : Calculer le diamètre et la portée de ce tourillon d'extrémité en prenant l=1.5d en condition de fabrication. Les résultats devront être exprimés dans le système international puis en unités usuelles.

Données numériques :

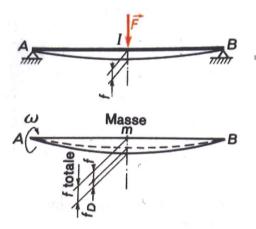
On prendra pour valeur du Mt quadratique : $I \approx 0.05d^4$ Relation liant la longeur de portée au diamétre: l=1.5d Réaction de l'appui: $R_A=2000$ N Contrainte de travail admissible: $\sigma_w=100$ N/mm² (à convertir en Pa) Pression limite: $p_{limite}=5$ MPa (à convertir en Pa) Puissance limite: $P_{limite}=300000$ W/m² Coefficient de frottement: f=0.05 Vitesse angulaire du tourillon: $\omega=40\pi$ rd/s

Exercice 4 : Evaluation de la vitesse critique d'un arbre en rotation.

5 points

La poutre AB est un arbre de transmission c'est-à-dire qu'elle est animée d'un mouvement circulaire uniforme de vitesse angulaire ω radians par seconde.

Cet arbre est sollicité par une charge \vec{F} , appliquée en son milieu I, qui peut être assimilée à l'action de la pesanteur d'une masse m égale à F/g.



Cet arbre de section constante, supposé initialement au repos, se déforme sous l'action de sa masse et la déformée que nous savons déterminée donne au milieu une flèche maximale statique f proportionnelle à F:

$$f = \frac{FL^3}{48EI} = C.F = C.m.g$$
 avec $C = \frac{L^3}{48EI}$

La masse m est de ce fait excentrée et, lorsque l'arbre est en mouvement, il en résulte un effet d'inertie E_i , qui provoque une flèche supplémentaire dynamique f_D proportionnelle à E_i .

$$f_D = CE_i$$

Comme $E_i = m\omega^2(f + f_D)$ il vient en remplaçant E_i par f_D/C :

$$\frac{f_D}{C} = m\omega^2 (f + f_D)$$

Soit:

$$f_D = \frac{Cm\omega^2 f}{1 - Cm\omega^2} \qquad (1)$$

Travail demandé:

Question 1_ Calcul littéral :

A partir de la formulation (1), trouver l'expression de la vitesse angulaire critique $\omega_{critique}$. Vous montrerez que $\omega_{critique}$ ne dépend que de la flèche statique f et de l'accélération de la pesanteur g.

Question 2_Application numérique :

Calculer la valeur approchée de la vitesse critique de l'arbre pour une flèche statique au milieu de l'arbre (L/2) de 0.014 mm et $g=9.81\ m.\ s^{-2}$. On exprimera le résultat en tr/mn.