Automne 2023

Calculatrices interdites. Le seul document autorisé est une feuille A4 recto-verso rédigée à la main

Il sera tenu compte dans la correction de la présentation et de la rédaction correcte des démonstrations.

Exercice 1 (Applications directes du cours) - 6 points

Dans cet exercice, aucune question ne nécessite plus de quelques lignes pour être résolue

1. Déterminer la limite

$$\lim_{x\to 0} \frac{\ln((1+x).(1-x))}{\sin^2(x)}$$
.

- 2. Donner une condition nécessaire et suffisante sur $(\lambda, \mu) \in \mathbb{C}^2$ pour que $X^2 + 2$ divise $X^4 + X^3 + \lambda X^2 + \mu X + 2$.
- 3. Démontrer que pour tout $x \in [-1,1]$, $\arccos(x) + \arcsin(x) = \frac{\pi}{2}$.
- 4. Soit $f:[0,1] \longrightarrow \mathbb{R}$ une fonction continue telle que f(0)=f(1). Montrer qu'il existe $c \in [0,\frac{1}{2}]$ tel que $f(c)=f(c+\frac{1}{2})$.

Justifier soigneusement!

Exercice 2 - 3 points

On se propose dans cet exercice de déterminer toutes les fonctions $f: \mathbb{C} \to \mathbb{C}$ vérifiant les trois propriétés suivantes :

- (i) $\forall z \in \mathbb{R}, f(z) = z$.
- (ii) $\forall (z, z') \in \mathbb{C}^2$, f(z + z') = f(z) + f(z').
- (iii) $\forall (z, z') \in \mathbb{C}^2$, $f(z \times z') = f(z) \times f(z')$.

Soit f une fonction vérifiant les propriétés ci-dessus.

- 1. Démontrer que f(i) = i ou f(i) = -i.
- 2. On suppose que f(i) = i. Démontrer que, pour tout $z \in \mathbb{C}$, f(z) = z.
- 3. On suppose que f(i) = -i. Démontrer que, pour tout $z \in \mathbb{C}$, $f(z) = \bar{z}$.

Justifier soigneusement!

Exercice 3 - 5 points

Dans cet exercice, on cherche les primitives de la fonction réelle définie par

$$f(x) = \frac{x^4 + 3 \cdot x^3 + 7 \cdot x^2 + 9 \cdot x + 6}{x^3 + 3 \cdot x^2 + 4 \cdot x + 2}.$$

- 1. Factoriser le dénominateur en polynômes irréductibles à coefficients dans \mathbb{R} .
- 2. Montrer que $f(x) = P(x) + \frac{a}{Q(x)} + \frac{bx+c}{R(x)}$ où $P(X) \in \mathbb{R}[X]$ et Q(X), R(X) sont les deux polynôme irréductibles obtenus à la question précédente (avec $\deg(Q(X)) = 1$) et $a, b, c \in \mathbb{R}$.
- 3. Déterminer les primitives de f sur son ensemble de définition.

Justifier soigneusement!

Exercice 4 - 5 points

Soit une suite $(u_n)_n$ définie pour tout entier naturel n par :

$$\begin{cases} u_0 \in \mathbb{R} \\ u_{n+1} = \frac{4}{4 - u_n} \end{cases}$$

- 1. (a) Déterminer u_0 pour que cette suite soit constante.
 - (b) On suppose que $u_0 < 2$. Montrer par récurrence que $(u_n)_n$ est majorée par 2.
 - (c) Calculer $u_{n+1} u_n$ et en déduire la monotonie de la suite $(u_n)_n$.
 - (d) Déterminer la limite de la suite $(u_n)_n$.
- 2. Dans la suite de l'exercice, on suppose que $u_0 = -1$. Soit une suite $(v_n)_n$ telle que $v_n = \frac{1}{u_n 2}$.
 - (a) Calculer $v_{n+1} v_n$ en fonction de u_n . En déduire que $(v_n)_n$ est une suite arithmétique. On précisera sa raison et son premier terme.

Questions supplémentaires - 2 points

- (b) Calculer v_n en fonction de n.
- (c) En déduire $u_n = \frac{-2+6n}{2+3n}$.

Justifier soigneusement!