Final Exam - January, the 16th 2015

Exercise 1 State and prove the pythagorean theorem in an inner product space.

- **Exercise 2** State the theorem of convergence of \mathcal{P} -series¹ and prove it.
- **Exercise 3** Study the convergence of the series $\sum \ln(1 + \frac{1}{n^2})$.

Exercise 4 We consider the function f defined on \mathbb{R} by

$$f(x) = \frac{\pi - x}{2} \text{ for } x \in]0, \ 2\pi[, \ f(0) = 0 \tag{1}$$

and extended by 2π -periodicity.

- 1. Plot the graph of f in the interval $[-2\pi, 4\pi]$. This function is called the sawtooth wave².
- 2. State the general form of the Fourier series of a T-periodic function f together with the expression of its coefficients a_n and b_n .
- 3. We denote by a_n and b_n the Fourier coefficients of f.
 - (a) Justify that $a_n = 0$ for all $n \neq 0$.
 - (b) Admitting that $\int_0^{2\pi} x \sin(nx) dx = -\frac{2\pi}{n}$ for all $n \in \mathbb{N}^*$. Calculate the coefficient b_n .
- 4. Prove the pointwise³ convergence of the Fourier series of f.

Exercise 5 We approximate the sawtooth wave (1) by a linear combination of the three trigonometric polynomials

$$\phi_0(x) = 1, \ \phi_1(x) = \sqrt{2}\sin x \ \text{and} \ \phi_2(x) = \sqrt{2}\sin(2x)$$

belonging to the Fourier basis of 2π -periodic functions. We recall that this family is orthonormal for the inner product

$$\langle f,g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)g(x) \ dx.$$

We define the inner product space \mathcal{V} spanned by these trigonometric polynomials.

- 1. Calculate the orthogonal projection of the function f defined in (1) on the vector space \mathcal{V} . You may use the result of Exercise 4 question 3.
- 2. Let $d(f, \mathcal{V})$ the distance between the function f and the vector space \mathcal{V} .
 - (a) Find the expression of $d(f, \mathcal{V})$.
 - (b) Calculate this distance.

¹also called Riemann series ²onde en dents de scie.

³ie at any $x \in \mathbb{R}$

Exercise 6 Let us denote by $\mathcal{B}_0 = (e_1, e_2, e_3)$ the canonical basis of the vector space \mathbb{R}^3 . We consider the matrix

$$A = \frac{1}{3} \begin{pmatrix} 2 & -1 & 2\\ 2 & 2 & -1\\ -1 & 2 & 2 \end{pmatrix} \in \mathfrak{M}_3(\mathbb{R}).$$

- 1. Verify that A is an orthogonal matrix.
- Determine the invariant space D of A.
 In the following, we denote by P the orthogonal projection on D.
- 3. Give, without justification, the kernel and the image of \mathcal{P} .
- 4. Find the matrix B of \mathcal{P} in the basis \mathcal{B}_0 . Let f be the linear mapping in \mathbb{R}^3 associated to the matrix A in the basis \mathcal{B}_0 .
- 5. Prove that f is a rotation and find a vector n of the rotation axis.
- 6. Let α be the rotation angle of f.
 - (a) Calculate $\cos(\alpha)$.
 - (b) Calculate $\sin(\alpha)$.
 - (c) Deduce the value of α .