Examen du 25 juin 2021: 8h00-10h00

Exercice 1

a. Donner la définition de $e^{\bf A}$ et démontrer que $\frac{d}{dt}e^{{\bf A}t}={\bf A}e^{{\bf A}t}$ pour une matrice ${\bf A}$ carrée et diagonalisable.

b. Considérons **A** une matrice 2×2 ayant 1 et 2 pour valeurs propres et $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ comme vecteurs propres associés. Calculez $e^{\mathbf{A}t}$.

c. A l'aide de la formule de Duhamel en déduire la solution du problème de Cauchy $\mathbf{y}'(t) = A\mathbf{y}(t) + \mathbf{b}$ pour t > 0 et $\mathbf{y}(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ où $\mathbf{b} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Un résultat obtenu avec autre méthode n'est pas compté.

Exercice 2

a. Utilisez deux itérations du schéma d'Euler explicite avec un pas de temps h=0,2 pour trouver une valeur approchée de y(1,4) où y est solution du problème de Cauchy

$$\frac{dy(t)}{dt} = y(t) - t \text{ pour } t > 1 \text{ et } y(1) = 3.$$

b. Appliquer le théorème de Cauchy-Lipschitz global pour démontrer que ce problème admet une solution unique.

c. Vérifier que la solution générale de l'équation différentielle est $y(t) = ce^t + t + 1$, où c est une constante. En déduire la solution du problème de Cauchy. Puis, calculer l'**erreur de consistance** du schéma d'Euler explicite pour cette EDO à l'issue du second pas pour h = 0, 2.

d. Démontrer la consistance du schéma d'Euler explicite pour cette EDO.

e. Démontrer la stabilité du schéma d'Euler explicite pour cette EDO. En déduire sa convergence.

Exercice 3

a. Résoudre l'équation différentielle $v'(t) = \frac{v^2(t) + v(t)}{t(v(t) - 1)}$. On arrivera à une équation algébrique qu'on simplifiera mais qu'on ne peut pas résoudre. **Aide**: Penser à utiliser la décomposition $\frac{v-1}{v^2+v} = \frac{A}{v} + \frac{B}{v+1}$ où A et B sont à déterminer.

b. En déduire la résolution de l'équation différentielle $y' = \frac{2y^2}{xy - x^2}$. De même, on arrivera à une équation algébrique qu'on s'implifera et qu'on ne peut pas résoudre. Conseil: on pourra utiliser le changement de fonction v(x) = y(x)/x.

Exercice 4 On cherche la solution du problème aux limites de valeurs propres,

$$-\Delta u = \lambda u \text{ dans } \Omega =]0, 1[\times]0, 1[\text{ et } u = 0 \text{ sur } \partial\Omega.$$
 (1)

On dit que λ est une valeur propre de l'application linéaire,

$$-\Delta: \begin{array}{ccc} \mathcal{V} & \to & \mathcal{V} \\ u & \mapsto & -\Delta u \end{array}$$

1

définie dans le sous-espace vectoriel de $\mathcal{V} = L^2(\Omega)$ des fonctions à valeurs réelles qui vérifient $\Delta u \in \mathcal{V}$ et la condition u = 0 sur $\partial \Omega$. A chaque valeur propre λ il correspond des vecteurs propres u qui sont des fonctions $(x, y) \to u(x, y)$ solution de (1).

a. Etant donné la formulation variationnelle: $u \in \mathcal{V}^D = \{v \in H^1(\Omega) \mid v = 0 \text{ sur } \partial\Omega\},\$

$$\int_{\Omega} \overrightarrow{\nabla u} . \overrightarrow{\nabla v} \ dx = \lambda \int_{\Omega} u \ v \ dx$$

pour tout $v \in \mathcal{V}^D$. Montrer que pour une valeur propre λ , si u est solution de la formulation variationnelle alors elle est solution du problème aux limites (1). Dans la suite, on admet la réciproque.

- **b.** Démontrer que les valeurs propres λ sont réelles et strictement positives.
- c. Démontrer que deux vecteurs propres u_1 et u_2 associés à deux valeurs propres différentes λ_1 et λ_2 vérifient les égalités

$$\int_{\Omega} \overrightarrow{\nabla u_1} \cdot \overrightarrow{\nabla u_2} \ dx = 0 \text{ et } \int_{\Omega} u_1 \ u_2 \ dx = 0.$$

d. On s'intéresse à la solution du problème de valeurs propres

$$-w'' = \mu w \text{ dans } I =]0, 1[\text{ et } w(0) = w(1) = 0.$$
 (2)

On dit que μ est une valeur propre de l'application linéaire,

$$-\frac{d^2}{dx^2}: \begin{array}{ccc} \mathcal{W} & \to & \mathcal{W} \\ w & \mapsto & -\frac{d^2w}{dx^2} \end{array}$$

définie dans le sous-espace vectoriel de $W = L^2(I)$ des fonctions à valeurs réelles qui vérifient $w'' \in W$ et la condition w(0) = w(1) = 0. A chaque valeur propre μ il correspond des vecteurs propres w qui sont des fonctions $x \to w(x)$. En s'inspirant des questions a) et b), montrer que toutes les valeurs propres μ sont réelles et strictement positives. On admet l'équivalence entre le problème aux limites (2) et sa formulation variationnelle.

- e. Résoudre le problème de valeur propres (2) de façon analytique. Pour chaque μ solution, on trouvera le ou les vecteurs propres w associés.
- **f.** Résoudre le problème de valeur propre (1) de façon analytique. Pour chaque λ solution, on trouvera le ou les vecteurs propres u associés.
- g. En supposant que la fonction $(x,y) \to f(x,y)$ est une combinaison linéaire $f = \sum_i \alpha_i u_i$ d'un nombre fini de vecteurs propres, utiliser les résultats précédents pour trouver une solution φ du problème aux limites

$$-\Delta \varphi = f$$
 dans Ω et $\varphi = 0$ sur $\partial \Omega$

sous forme d'une combinaison linéaire $\varphi = \sum_i \beta_i u_i$ des mêmes vecteurs propres. On déterminera les coefficients β_i en fonction des coefficients α_i et des valeurs propres λ_i .