

MT32 - Final

 $Dur\acute{e}e:\mathbf{2h}.$

Une feuille A4 recto seul de notes autorisée.

Calculatrice autorisée.

- Toute réponse non justifiée sera ignorée.
- → Seules les explications claires et précises seront prises en compte lors de la correction.
- → La solution à une question sera spécifiée avec soin dans l'espace qui lui est réservé quand cela est demandé.
- → Le détail de ce chaque question sera, quant à lui, rédigé sur une copie classique.

Nom	Prénom	Signature	Note

Exercice 1 (Intégrales doubles)

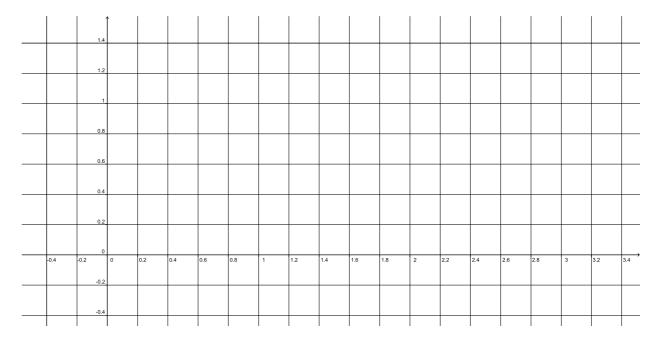
On considère P une plaque mince homogène dont l'épaisseur est négligeable donnée par :

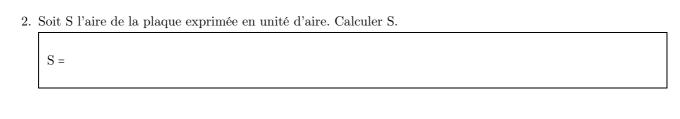
$$P = \left\{ (x, y) \in \mathbb{R}^2 / \quad 0 \leqslant x \leqslant 2, \quad 0 \leqslant y \leqslant \frac{1}{x+1} \right\}$$

On suppose ici que $\rho(x,y)$ la densité surfacique de cette plaque est constante.

Remarque/Aide Pour la suite, on pourra noter que : $\frac{x}{x+1} = 1 - \frac{1}{1+x}$

1. Représenter graphiquement la plaque P.





3. Soit G le centre de gravité de la plaque. Déterminer les coordonnés de G.

$$y_{\rm G}$$
 =

Exercice 2 (Fonctions à plusieurs variables)

Soit la fonction f(x,y) de \mathbb{R}^2 à valeurs dans \mathbb{R} définie par :

$$f(x,y) = e^{y(1+x)}$$

 $1. \ \, {\rm Calculer} \ {\rm les} \ {\rm d\'eriv\'ees} \ {\rm partielles} \ {\rm d\'eriv\'ee} 1.$

$$\frac{\partial f}{\partial x}(x,y) =$$

$$\frac{\partial f}{\partial y}(x,y) =$$

2. Calculer les dérivées partielles d'ordre 2 données ci-dessous.

$$\frac{\partial^2 f}{\partial x^2}(x,y) =$$

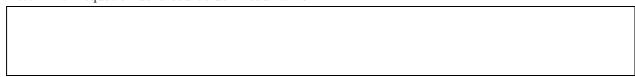
$$\frac{\partial^2 f}{\partial y^2}(x,y) =$$

$$\frac{\partial^2 f}{\partial x \partial y}(x,y)$$

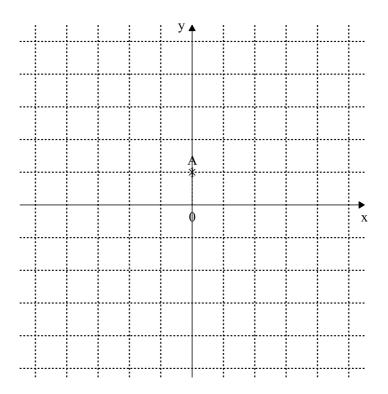
- 3. Que pouvez vous dire concernant $\frac{\partial^2 f}{\partial y \partial x}(x,y)$?
- 4. Déterminer son gradient en un point (x, y) quelconque.

$\nabla f(x,y)$ =			

5. Déterminer l'équation de la courbe de niveaux k = e.



6. Sur la figure ci-dessous dessiner la courbe de niveaux k = e et le gradient au point A = (0,1). Que remarquez vous?



Exercice 3 (Diagonalisation)

Soit	la	${\it matrice}$	A	$\operatorname{donn\acute{e}e}$	par	:
------	----	-----------------	---	---------------------------------	-----	---

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

1. Déterminer $P_A(\lambda)$ le polynôme caractéristique de A.
$\mathrm{P}_{\mathrm{A}}(\lambda)=$
2. Trouver les valeurs propres de A.
3. La matrice A est-elle diagonalisable? Justifier.
4. Espaces propres.
(a) Déterminer les espaces propres de A.
(b) Déterminer une base propre B' de A.
B' =
5. Conséquences
(a) Donner D, la matrice diagonale.

(b) Fournir la matrice de passage de B à B', notée P.

P =

(c) Calculer A^k .

D =

 $A^k =$