Automne 2024

Calculatrices interdites. Le seul document autorisé est une feuille A4 recto-verso rédigée à la main

Il sera tenu compte dans la correction de la présentation et de la rédaction correcte des démonstrations.

Exercice 1 - 3 points

Etudier la convergence de $\int_0^{+\infty} \frac{\sin(x)}{\sqrt{x}} dx$ et $\int_0^{+\infty} \frac{\sin(x)}{\sqrt{x}} \cdot (1 + \frac{\sin(x)}{\sqrt{x}}) dx$. Que peut-on en déduire sur l'étude d'une intégrale généralisée et l'équivalence?

Justifier soigneusement.

Exercice 2 - 6 points

Étudier la convergence des séries suivantes :

1.
$$S_1 = \sum (\frac{n}{n^2+1})^n$$
,

2.
$$S_2 = \sum \frac{n!}{2^n}$$
,

3.
$$S_3 = \sum \frac{n^n}{n!}$$

4.
$$S_4 = \sum \frac{(-1)^n}{n - \ln(n)}$$
.

Justifier soigneusement.

Exercice 3 - 3 points

Pour $a \in \mathbb{R}$, soit f_a l'endomorphisme de \mathbb{R}^3 défini par :

$$f_a(x, y, z) = (x + 3.y + a.z, 2.x - y + z, -x + y).$$

Déterminer les $a \in \mathbb{R}$ tels que f_a soit bijective.

Justifier soigneusement.

TOURNER LA PAGE SVP

Exercice 4 - 8 points

Soient les suites numériques $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ définies par $u_0=1$, $v_0=-1$, $w_0=2$ et $\forall n\in\mathbb{N}$

$$\begin{cases} u_{n+1} &= u_n - 2v_n + 2w_n \\ v_{n+1} &= -v_n + 2w_n \\ w_{n+1} &= w_n \end{cases}$$

- 1. Déterminer la matrice $A \in \mathcal{M}_3(\mathbb{R})$ telle que $\begin{pmatrix} u_{n+1} \\ v_{n+1} \\ w_{n+1} \end{pmatrix} = A \cdot \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$.
- 2. Déterminer les valeurs propres de A et leur multiplicité.
- 3. Déterminer les vecteurs propres de A, une matrice de passage P et une matrice diagonale $D \in \mathcal{M}_3(\mathbb{R})$ telle que $A = P.D.P^{-1}$
- 4. exprimer A^2 , A^3 en fonction de P et D. En déduire, pour $n \in \mathbb{N}^*$, A^n en fonction de P, D et n.
- 5. En déduire u_n , v_n et w_n en fonction de n.

Justifier soigneusement.