Final Exam - January, the 17th 2024 2 hours

Exercise 1 - Improper Integrals -

1. State the proposition about 'Continuity of an Integral Depending on a Parameter'.
2. Integration by Parts for an Improper Integral: Let u and v be two functions of class \mathcal{C}^{1} on the interval $[a,+\infty[$.
(a) Suppose that $\lim _{t \rightarrow+\infty} u(t) v(t)$ exists and is finite. Prove that the integrals $\int_{a}^{+\infty} u(t), v^{\prime}(t) \mathrm{d} t$ and $\int_{a}^{+\infty} u^{\prime}(t) v(t) \mathrm{d} t$ are of the same nature.
(b) In the case of their convergence prove the formula of integration by part :

$$
\int_{a}^{+\infty} u(t) v^{\prime}(t) \mathrm{d} t=[u v]_{a}^{+\infty}-\int_{a}^{+\infty} u^{\prime}(t) v(t) \mathrm{d} t .
$$

Exercise 2-Determinants -

1. Prove that if a $n \times n$ matrix A is invertible then $\operatorname{det}(A) \neq 0$.
2. Let $a \in \mathbb{R}$ and A be the following matrix

$$
A=\left(\begin{array}{lll}
1 & 0 & a \\
0 & a & 1 \\
a & 1 & 0
\end{array}\right) .
$$

(a) Calculate the determinant of A and determine for which values of a the matrix is invertible.
(b) Calculate A^{-1} when A is invertible.

Exercise 3 - Series - Justifying your answer, classify the following series into the four categories:

- GD: those such that u_{n} does not tend towards 0 ;
- ZD: those which diverge and such that $\lim u_{n}=0$;
- AC: those which converge absolutely;
- SC: those which converge, but not absolutely.

Warning: some cases require two demonstrations, for example, to show that $\sum u_{n}$ is SC , you have to show that $\sum u_{n}$ converges and that $\sum\left|u_{n}\right|$ diverges.

1. $\sum_{n=1}^{\infty}\left(\frac{(-1)^{n}}{n}+\frac{1}{n^{2}}\right)$.
2. $\sum_{n=1}^{\infty}(\sqrt{n+1}-\sqrt{n})$.
3. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}(\sqrt{n+1}-\sqrt{n})^{2}$.

Exercise 4 - Diagonalization -

1. State and prove the 'Diagonalization Theorem' i.e. the necessary and sufficient condition for a matrix A to be diagonalizable.
2. Let

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-9 & 1 & 9 \\
9 & 0 & -8
\end{array}\right) .
$$

(a) Determine the eigenvalues of A.
(b) Give a basis of eigenvectors of A and diagonalise A.
(c) We want to determine a matrix B such that $B^{3}=A$.
i. Show that if λ is an eigenvalue of B then λ^{3} is an eigenvalue of A.
ii. Show that each eigenvector of B is also an eigenvector of A.
iii. Determine the eigenvalues of B and their multiplicity.
iv. Write the characteristic polynomial P_{B} of B.
v. We admit that, according to the Cayley-Hamilton theorem, $P_{B}(B)=0_{\mathcal{M}_{3}(\mathbb{R})}$. Deduce B such that $B^{3}=A$.

Exercise 5 - Inner Product Spaces -

1. Give the definition of an orthogonal projection.
2. Let $E=\mathbb{R}_{n}[X]$ with the inner product: For $P=\sum_{i} a_{i} X^{i}$ and $Q=\sum_{i} b_{i} X^{i},(P \mid Q)=\sum_{i} a_{i} b_{i}$.

Let $H=\{P \in E$ such that $P(1)=0\}$. We start with $n=2$.
(a) Find a basis of H.
(b) Find an orthonormal basis of H.
(c) Calculate the distance $d(X, H)$ between the polynomial X and H.
(d) Generalize this calculation to any $n \in \mathbb{N}$.
3. Let $E=\mathcal{C}([0,1])$ with inner product $(f \mid g)=\int_{0}^{1} f(t) g(t) \mathrm{d} t$, and $F=\{f \in E$ such that $f(0)=0\}$.
(a) Prove that $f \in F^{\perp} \Rightarrow x f \perp f$.
(b) Show that $F^{\perp}=\{0\}$.

Exercise 6 - Differential Equation -

1. Consider the differential equation $y^{\prime}(t)=\cos ^{2}(t y)$. Is there existence and uniqueness of solution for each initial condition $\left(t_{0}, y_{0}\right) \in \mathbb{R}^{2}$?
2. Solve the differential equation $y^{\prime}(x)=\frac{\sqrt{x-4}}{y^{2}}$ where $y(4)=-1$.
