ℤ:1 h 30

FINAL PS11 - P2012			UTBN	1
NOM	Prénom		Signature	
Les calculs sont à détailler sur la copie avec les justifications nécessaires. Reporter les réponses dans les cadres. Une réponse juste non justifiée pourra être comptée comme nulle.				
1. Questions de cours				
a. Un véhicule se déplaçant sur une ligne droite a une accélération constante de valeur $a = 6 m.s^{-2}$. Calculer la durée Δt mise pour passer de 0 à $100 km.h^{-1}$ ainsi que la distance d parcourue.				
$\Delta t =$		d =		
b. Un satellite géostationnaire est immobile dans le référentiel .				
c. Calculer la valeur F de la force d'interaction gravitationnelle qu'exerce la Terre sur le Soleil lorsque la distance entre leurs centres est $d = 150.10^6 \ km$.				
d. Déterminer les caractéristiques (direction, sens, valeur) du vecteur accélération d'un véhicule supposé ponctuel, de masse $m = 1100 kg$, prenant un virage circulaire horizontal de rayon				
$R = 120 m$ à la vitesse constante $v = 80 \text{ km.h}^{-1}$.		Direction:		
		Sens:		
		Valeur:		
e. Calculer la valeur de la poussée d'Archimède exercée par l'eau sur un cube d'arête $a = 2 m$ dont				
80 % du volume est immergé.	Π=			

2. Voyageuse en retard

Sur le quai d'une gare, une voyageuse en retard essaie de rattraper son train ; elle court à une vitesse constante $v = 8 \, m.s^{-1}$. Le train démarre à t = 0 alors qu'elle est encore à $d = 100 \, m$ de l'arrière du train (point A). L'accélération constante du train a une intensité $a = 0,5 \, m.s^{-2}$. La voie est supposée rectiligne (axe x'x) et on choisit comme origine x = 0 la position du point A à t = 0.

a. Établir les équations horaires $x_V(t)$ et $x_A(t)$ donnant les positions de la voyageuse et de l'arrière du train. En déduire l'expression de la fonction $\delta(t)$ donnant la distance entre le point A (arrière du train) et la voyageuse au cours du temps.

$$x_{V}(t) =$$

$$x_{A}(t) =$$

$$\delta(t) =$$

La voyageuse arrivera-t-elle à rattraper son train ? Sinon, à quelle distance minimale s'en trouvera-t-elle ?

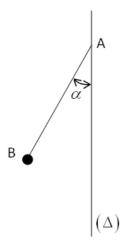
b. Quelle devrait-être, à l'instant du démarrage, la distance maximale entre le train et la voyageuse pour que celle-ci atteigne effectivement le dernier wagon ?

3. Pendule conique

Un solide S, de petites dimensions, de masse m est attaché à l'extrémité B d'un fil très fin, de masse négligeable, de longueur constante l. L'autre extrémité du fil est fixée en un point A d'un axe vertical Δ tournant sur lui-même à la vitesse angulaire ω . Le fil s'incline alors d'un angle α par rapport à l'axe et le solide S est animé d'un mouvement circulaire de vitesse angulaire ω .

Déterminer les caractéristiques de la tension du fil sur le solide et la valeur de l'angle α .

Données numériques : $l = 0.30 \, m$; $\omega = 12 \, rad.s^{-1}$; $m = 0.10 \, kg$.



Tension du fil:

Direction:

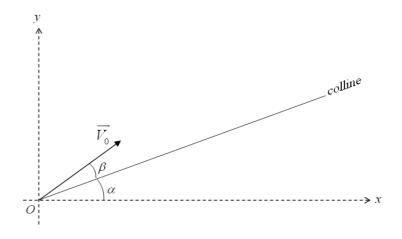
Sens:

Valeur:

Inclinaison du pendule : α =

4. Tir balistique

Un canon est situé sur le flanc d'une colline modélisée par un plan incliné faisant un angle $\alpha = 20^{\circ}$ avec l'horizontale. Le projectile, supposé ponctuel, de masse $m = 10 \, kg$, est lancé depuis l'origine d'un repère orthonormé (O, x, y) avec un vecteur vitesse initiale faisant un angle β avec la colline (voir figure).



Dans les questions a et b on ne se préoccupe pas de la colline...

a. Établir l'expression littérale de la trajectoire du projectile dans le repère (O, x, y). On notera $\theta = \alpha + \beta$ l'angle de tir par rapport à l'horizontale.

$$y(x) =$$

b. Établir les expressions littérales des coordonnées x_s et y_s du sommet S de la trajectoire.

$$x_{s} =$$
 $y_{s} =$

c. Quelle relation lie les coordonnées x_P et y_P du point d'impact P du projectile sur la colline (cf. équation du plan incliné modélisant la colline) ?

$$y_P =$$

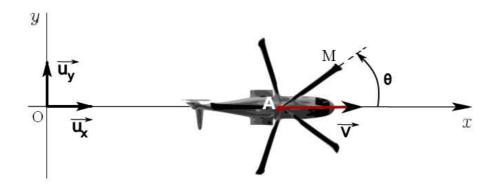
d. Calculer la valeur de l'angle β pour que le projectile touche la colline avec un vecteur vitesse horizontal.

$$\beta$$
 =

5. Vitesse maximale d'un hélicoptère

On considère un hélicoptère se déplaçant horizontalement et en ligne droite à la vitesse constante $\overline{V_A}$. Les pales de l'hélicoptère, de longueur L, tournent à la vitesse angulaire ω . On s'intéresse au mouvement du point M situé à l'extrémité d'une pale. La position de M est déterminée par celle de A (centre d'inertie de l'hélicoptère) et par l'angle θ entre (Ax) et la pale AM (voir figure).

Pour les applications numériques on prendra les caractéristiques de l'hélicoptère Gazelle SA341 : $L=6,0~m~;~\omega=378$ tours par minute.



a. Calculer la valeur de la vitesse angulaire du rotor en $rad.s^{-1}$.

ω=

b. Donner les expressions temporelles des vecteurs \overrightarrow{OA} et \overrightarrow{AM} . En déduire celle du vecteur position \overrightarrow{OM} .

$$\overrightarrow{OA} = \overrightarrow{AM} =$$

c. Exprimer le vecteur vitesse $\overrightarrow{v_M}(t)$ du point M dans le référentiel terrestre auquel est lié le repère $(O, \overrightarrow{u_x}, \overrightarrow{u_y})$.

$$\overrightarrow{v}_{M} =$$

d. Exprimer la norme $v_M(t)$ du vecteur $\overrightarrow{v_M}(t)$ en fonction de V_A , L, ω et t.

$$v_{M} =$$

e. Déterminer la vitesse maximale d'avancement de l'hélicoptère $V_{A,\,\mathrm{max}}$ sachant que la vitesse du point M ne doit, à aucun moment, dépasser la vitesse du son. On donnera le résultat en $km.h^{-1}$.

Indication : Commencer par exprimer littéralement $v_{M,\max}$, plus grande valeur de v_M , en fonction de V_A , L et ω .

Donnée: $v_{son} = 340 \text{ m.s}^{-1}$.

$$v_{M, \text{max}} =$$

$$V_{A, \text{max}} =$$

Données générales :

diamètre de la Terre : $D = 1,28.10^7 m$

constante de la gravitation universelle : $G = 6,67.10^{-11} uSI$

vitesse de la lumière dans le vide : $c = 2,998.10^8 \text{ m.s}^{-1}$

charge élémentaire : $e = 1, 6.10^{-19} C$

masse de la Terre : $m_T = 6,0.10^{24}~kg~$; masse du Soleil : $M_S = 3,3.10^5 \times m_T$

accélération de la pesanteur : $g = 10 \text{ m.s}^{-2}$

masse volumique de l'eau : $\mu_{eau} = 1\,000\,kg.m^{-3}$