Exercice 1 : Considérons le système de suites récurrentes suivant :

$$\begin{cases} U_{n+1} &= 2U_n + V_n \\ V_{n+1} &= -3U_n - 2V_n \end{cases}$$

avec les conditions initiales $U_0=0$ et $V_0=1$. Pour n entier naturel, on définit le vecteur $X_n=egin{pmatrix} U_n \ V_n \end{pmatrix}$

Objectif : L'objectif de l'exercice est de trouver l'expression de U_n et V_n en fonction de n.

1 point | 1. Montrer que $X_{n+1} = A X_n$, où A est une matrice que l'on déterminera.

1 point | 2. Démontrer par récurrence la relation $X_n = A^n X_0$.

2 points 3. Calculer le polynôme caractéristique $p(\lambda) = det(A - \lambda I)$ et déterminer les valeurs propres $\lambda_1 < \lambda_2$ de A.

1 point | 4. La matrice **A** est-elle diagonalisable?

2 points 5. Déterminer les sous-espaces propres E_{λ_1} et E_{λ_2} associés aux valeurs propres ainsi que leurs bases propres e_1 et e_2 . On veillera à ce que les composantes de e_1 et e_2 soient des entiers relatifs.

2 points 6. Dans la suite on prendra $D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$. Fournir la matrice de passage P de la base canonique à la base propre.

2 points 7. Calculer P^{-1} .

1 point \mid 8. Quelles sont les valeurs propres de A^n .

2 points | 9. Calculer A^n en fonction de n.

2 points | 10. En déduire U_n et V_n en fonction de n.

Exercice 2: (4 points) Soit

$$A=egin{pmatrix} 0 & 1 \ y-4 & 2x \end{pmatrix}$$

Pour quelles valeurs de x et y la matrice A est-elle diagonalisable?