

Examen final SI40 – 2024/2025

Durée: 2h00

Document autorisé: Une double feuille A4 manuscrite.

Toute utilisation d'outils d'intelligence artificielle (ex. ChatGPT, Copilot, etc.) ou n'importe quel document externe est strictement interdite et sera considérée comme une tentative de fraude.

Exercice 1 : QCM (5 points)
Choisir la ou les réponses correctes (il peut y en avoir plusieurs). (Réponse correcte : $+1$, Réponse fausse : -0.25 , Aucune réponse : 0)
1.1 Le théorème CAP implique qu'en cas de partition réseau :
 ☐ Un système CP garantit la cohérence mais sacrifie la disponibilité. ☐ Un système CA peut être pleinement tolérant à la partition. ☐ Le modèle AP est souvent privilégié dans les systèmes distribués NoSQL. ☐ Le modèle CAP ne s'applique pas aux bases orientées documents.
1.2 Concernant MongoDB:
□ Le champ _id est automatiquement généré s'il n'est pas précisé. □ Pour effectuer des liens entre des documents, la voie conseillée est le linking en détriment du embedding. □ L'operation updateMany() peut modifier plusieurs documents avec un seul appel. □ Dans une projection MongoDB, slice permet d'ordonner les documents par taille du tableau.
1.3 Dans une architecture BI complète :
 □ Le Data Warehouse peut contenir des données transactionnelles brutes. □ L'étape ETL inclut la suppression des doublons et l'harmonisation des formats. □ Le reporting se situe avant la phase d'agrégation des données. □ L'OLAP permet d'exécuter des analyses ad hoc à partir des hypercubes.
1.4 À propos des bases orientées colonnes :

☐ Elles permettent des jointures complexes entre plusieurs tables.
\square Elles sont efficaces pour les lectures analytiques sur peu de colonnes.
☐ Elles imposent un schéma strict lors de la création.
☐ Cassandra est une base de données orientée colonne.

1.5 En sécurité SQL:

☐ Un rôle peut hériter de plusieurs privilèges.							
\square GRANT	SELECT,	UPDATE (column1)	ON	Table	TO	Role est syntaxiquement valide.	
□ ALTER USER permet de changer le rôle par défaut.							
☐ La commande REVOKE supprime un rôle de la base.							

Exercice 2 : Questions ouvertes (5 points)

- 2.1 Comparez les modèles de données suivants : clé-valeur, document, colonne, graphe. Pour chaque, donnez un exemple d'usage réel où ce modèle est particulièrement adapté. *(2pts)*
- 2.2 Vous concevez un système NoSQL distribué tolérant aux pannes pour gérer des logs applicatifs à haute fréquence. Justifiez le choix entre un système CP, CA, ou AP et le type de base (clé-valeur, document...). (1 pt)
- 2.3 Un entrepôt de données (DW) utilise un modèle en flocon. Expliquez les conséquences techniques de ce choix sur les performances OLAP et sur le processus d'ETL. (1pt)
- 2.4 Expliquer la différence entre un système de base de données SQL et NoSQL. (1pt)

Exercice 3 : Requêtes (3 points)

Considérons l'extrait de la collection *commande* suivant:

```
{
    " id": 101,
    "client": { "Prénom": "Jean", "region": "Bourgogne-Franche comté" },
    "produits": [
        { "nom": "SSD", "prix": 1000, "quantite": 2 },
        { "nom": "RAM", "prix": 500, "quantite": 4 }
],
    "date_commande": "2025-06-10",
    "total": 3000,
    "etat": "livré"
}
```

- 3.1 Écrivez une requête MongoDB pour trouver toutes les commandes dont au moins un produit a une quantité \geq 3 et dont le client.region est "Bourgogne-Franche comté" (0.75pt)
- 3.2 Écrivez une requête MongoDB pour ajouter une clé remise: 0.1 uniquement aux commandes dont total \geq 2500 et qui contiennent un produit nommé "SSD". (0.75pt)
- 3.3 Écrivez une agrégation MongoDB pour grouper les commandes par région, calculer le total global des ventes par région et trier les régions par montant décroissant. (0.75pt)
- 3.4 Supprimez toutes les commandes : dont le champ « produits » contient uniquement des produits avec un prix \leq 300. (0.75pt)

Exercice 4: Modélisation XML à partir d'un contexte métier (2 points)

Contexte:

Une école d'ingénieurs souhaite informatiser la gestion des projets tutorés réalisés par les étudiants. Pour cela, vous devez créer un fichier XML représentant les données suivantes :

- Chaque projet est identifié par un titre et un code unique.
- Un projet peut être réalisé par plusieurs étudiants (au moins un). Pour chaque étudiant, on souhaite stocker le nom, le prénom et le numéro d'étudiant (en attribut).
- Un projet est encadré par un enseignant référent, dont on précise le nom, l'email et la spécialité (ex. : "IA", "Sécurité", etc.).
- Un projet peut comporter un ou plusieurs livrables (document PDF, prototype, code source), chacun avec un type (ex. : "rapport", "application", "présentation") et une date de rendu.
- La section livrable est facultative (certains projets n'ont pas encore été rendus).

Consignes:

En vous basant sur ce contexte, écrivez un fichier XML bien formé représentant un projet tutoré avec :

- au moins 2 étudiants ;
- un enseignant référent avec spécialité;
- l'utilisation d'attributs lorsque pertinent (au moins une fois).
- Optionnel: Un livrable (Bonus +0.25 pt)