SM 58 – FINAL A12

1. Exercice 1 (8 points)

L'étude porte sur le véhicule électrique dont l'architecture est présentée sur la Figure 1.

- masse du véhicule : m = 912 kg (batterie comprise)
- diamètre des roues : D = 52 cm
- surface frontale véhicule : S = 1,8 m²
- coefficient de pénétration dans l'air : Cx = 0,29
- coefficient de roulement : Cr = 0,02
- 50 % du freinage est assuré par les freins mécaniques
- rapport de réduction du réducteur : r = 7,2 ;
- rendements chaine de traction : voir Figure 1
- rendement batterie
 - o 100 % à la décharge
 - o 75 % à la recharge

Figure 1 : architecture véhicule électrique

Le profil de vitesse adopté est divisé en 4 phases :

- 1. accélération constante de 0 km/h à 90 km/h en 14 s
- 2. vitesse constante de 90 km/h pendant 96 s
- 3. décélération constante de 90 km/h à 0 km/h en 10 s
- 4. arrêt pendant 10 s

Ce cycle sera répété un certain nombre de fois (à déterminer au cours de l'exercice) afin de satisfaire une autonomie de 100 km.

1.1 Quelle est la vitesse moyenne sur le cycle ?

Calculer pour les différentes phases la puissance à la roue P_{ROUE} et la puissance batterie P_{BAT} au début et à la fin de chaque phase. Reporter graphiquement les résultats sur le document réponse (

- 1.2 Figure 2).
- 1.3 Donner le couple mécanique maximal du moteur électrique atteint sur le cycle.

L'énergie consommée pour un cycle est de 492 Wh

- 1.4 Quelle serait l'énergie nécessaire pour pouvoir assurer une autonomie de 100 km?
- 1.5 Donner la masse et le volume de batterie nécessaire dans le cas d'une batterie Li-Ion classique (20% < SoC < 100 %) pour pouvoir assurer l'autonomie demandée (détailler les calculs).

2. Exercice 2 (12 points)

L'étude porte sur la comparaison des bilans énergétiques du puits à la roue d'un véhicule thermique, d'un véhicule hybride rechargeable et d'un véhicule électrique.

Les 3 véhicules ont les mêmes caractéristiques mécaniques. La puissance moyenne à la roue pour les 3 véhicules sur un cycle de roulage est de 12 kW. Le cycle dure 2 heures pour une vitesse moyenne de 80 km/h. On ne prend pas en compte les phases de freinage récupératif.

- Données véhicule à moteur thermique
 - o Carburant:
 - Gasoil
 - 1,40 €/litre
 - Rendement moyen total: 22 %
- Données véhicule hybride rechargeable à moteur thermique
 - o La traction entièrement électrique est utilisée pendant 50 % du cycle. Le reste du temps la traction est entièrement assurée par le moteur thermique
 - Carburant
 - Essence SP95
 - 1,55 €/litre
 - o Rendement moyen moteur thermique + chaine de traction : 19 %
 - o Rendement moyen moteur électrique + batterie + chaine de traction : 85 % (rendement identique à la charge et à la décharge)
 - o Le coût de l'électricité (produit par une centrale à turbine à gaz alimentée par un pipeline) est de 0,12 €/kWh
- Données véhicule électrique
 - o Rendement moyen moteur électrique + batterie + chaine de traction : 85 % (rendement identique à la charge et à la décharge)
 - o Le coût de l'électricité (produit par une centrale à turbine à gaz alimentée par un pipeline) est de 0,12 €/kWh
 - 2.1 Véhicule à moteur thermique. Calculer la consommation de carburant en MJ/km, puis en litre/100 km du véhicule à moteur thermique et les rejets de CO₂ en g/km
 - 2.1 Véhicule hybride rechargeable
 - 2.1.1.Calculer la consommation de carburant en MJ/km, puis en litre/100 km du véhicule hybride et les rejets de CO₂ en g/km
 - 2.1.2. Calculer la consommation d'électricité du véhicule hybride en kWh/km en MJ/km.
 - 2.2 Pour le véhicule électrique, calculez la consommation d'électricité en MJ/km puis en kWh/km.
 - 2.3 Complétez proprement le tableau du document réponse. Vous développerez vos calculs sur votre copie.

DOCUMENT REPONSE PRENOM:

NOM:

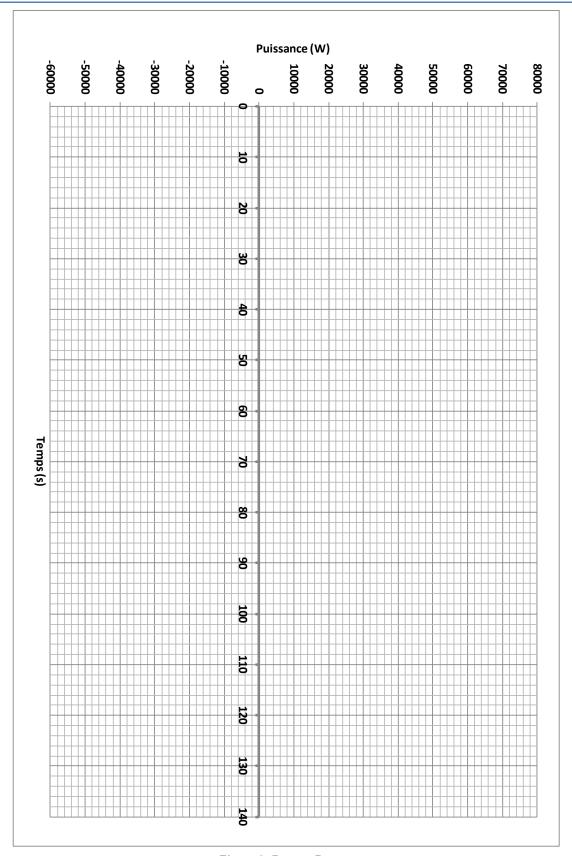


Figure 2: P_{BAT} et P_{ROUE}

	•	ilan du pui	Bilan du puits au réservoir	ir	!B	ilan du réser	Bilan du réservoir à la roue	е					
Véhicule	Productior	Production carburant	Production turbine	Production électricité turbine à gaz	Traction t	Traction thermique	Traction électrique	lectrique	Bilan du pui	Bilan du puits à la roue	Coût d	Coût d'utilisation €/km	E/km
	Rendement	ا مراردی	Rendement g CO2/km Rendement g CO2/km Rendement g CO2/km Rendement	a CO2 /km	Rendement	g CO2/km	Rendement g CO2/km Rendement g CO2/km Rendement	g CO2/km	Rendement	g CO2/km	Carburant	a CO2/km Carburant Electricité	IATOT
	ויפוומפווופוור	8 CO 2/ NIII	ויפוומפוויפוור	8 CO2/NIII	thermique	thermique	electrique	électrique	global	8 CO2/ NIII	Calbulant	Lieculule	- C - A
Mot Thermique													
Hybride													
recnargeable													
Electrique													