# MIDTERM

An electronic calculator, the distributions tables as well as a sheet of personnal notes are allowed for the exam. Any kind of dictionary are permitted

## USE ONE COPY BY EXERCISE

#### Exercise 1

A word of 5 letters is a list of 5 elements from a set of 26 letters (6 vowels and 20 consonants). As we are doing mathematics, we do not care if the word is meaningless (i.e. ZZZZ is a 5 letters word). Compute the number of 5 letters words in the following situations :

- **1.** Without restriction.
- 2. With 5 distinct letters.
- **3.** Starting with a consonant and finishing with a vowel.
- 4. Starting and finishing by a consonant.
- 5. With three times the letter e.
- 6. With the sequence tt (and no more than two t in the word).
- 7. With only one letter.
- 8. With two and only two different letters.

#### Exercise 2

Let us consider a population E of N people. A repeated trial is performed according to the following process :

- Step 1 : Each person of E takes a test. The probability of success is p. The result of each individual are mutually independent. The people who fail are eliminated.
- Step 2: We start over with the people not eliminated after step 1. An other test is performed with same probability p of success and the people who fail are elimindated.
- We keep going (step  $3, 4, \ldots$ ,) until everyone is eliminated.

Let  $X_n$  be the random variable which counts the number of remaining people after step n. For n = 0 we have  $X_0 = N$ .

- **1.** What is the probability distribution of  $X_1$ ?
- **2.** Study of  $X_n$ :
  - **a.** At the end of step n-1 we assume there are h individual left (i.e.  $X_{n-1} = h$ ). Compute  $P(X_n = k | X_{n-1} = h)$  (you may need to consider the cases h < k and  $h \ge k$ ).
  - **b.** Using the law of total probability give an expression for  $P(X_n = k)$  in terms of  $P(X_{n-1} = h)$  for  $0 \le h \le N$ .
  - **c.** Prove that  $\binom{N}{h}\binom{h}{k} = \binom{N}{k}\binom{N-k}{h-k}$ .
  - **d.** Prove by induction that  $X_n \sim \mathcal{B}(N, p^n)$ . What are  $E(X_n)$  and  $V(X_n)$ ?
- **3.** We now assume  $p = \frac{5}{6}$  (for instance E is a population of N players. Each player tosses a die and is eliminated if he gets 6). After how many steps do we have in average at most one individual left? Do the calculation for N = 10, 20, 100, 1000.

Please Turn Over!

SQ28 Spring 2009

### Exercise 3

Let  $X_1$  and  $X_2$  two independent random variables with  $X_i \sim \mathcal{E}(\lambda)$ .

- **1.** Prove that  $P(X_i > t) = e^{-\lambda t}$ .
- **2.** Let  $Y = min(X_1, X_2)$ .
  - **a.** Compute P(Y > t).
  - **b.** Deduce the density function of Y and conclude that  $Y \sim \mathcal{E}(2\lambda)$ .
  - **c.** Give E(Y) and V(Y)
- **3.** Let  $Z = max(X_1, X_2)$ .
  - **a.** Give the expression P(Z > t) in terms of  $P(X_1 > t)$ ,  $P(X_2 > t)$  and P(Y > t).
  - **b.** Prove the density function of Z is  $f_Z(t) = 2\lambda e^{-\lambda t} 2\lambda e^{-2\lambda t}$  when  $t \ge 0$ , and  $f_Z(t) = 0$  if t < 0.
  - c. Calculate E(Z).
- 4. [extra-points] Let W = X<sub>1</sub>+U where U ~ E(2λ). We assume X<sub>1</sub> and U are independent.
  a. Compute the density function of (X<sub>1</sub>, U).
  - b. Determine the density function of W.
  - **c.** Compare the distributions Z and W.
  - **d.** Calculate V(Z).
- 5. Application : Let us consider an electronic circuit with two components C1 and C2. We denote by  $X_1$  and  $X_2$ , the lifetime (in one hour units) of components 1 and 2. We assume  $X_1$  and  $X_2$  follow the exponential distribution  $\mathcal{E}(0.001)$ . We consider two ways of connecting the components :
  - In series (see figure 1) : the circuit is working as long as both C1 and C2 are not out of order.
  - In parallel (see figure 2) : the circuit is working as long as one of the component is functioning.



FIG. 1 – Series Circuit



FIG. 2 – Parallel circuit

- **a.** In the series circuit find the probability that the circuit lasts between 1500 and 2000 hours.
- **b.** Same question with the parallel circuit.

SQ28 Spring 2009