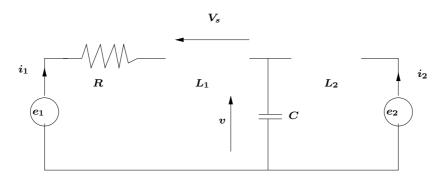
Les documents sont autorisés

Problème 1

On considère le système présenté dans la figure 1 : Les variables d'entrées sont les tensions e_1 et e_2 . La sortie est la tension V_s aux bornes de L_1 .



- (2 points) 1. En utilisant les lois des mailles et des nœuds, déterminer les équations caractéristiques du système.
- (3 points) 2. En choisissant comme variables d'état la tension aux bornes de la capacité et les courants i_1 et i_2 , établir l'équation d'état du système sous la forme :

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Gx(t) + Du(t)$$

Problème 2

On considère le système linéaire suivant :

$$\dot{x}(t) = egin{pmatrix} 0 & 1 \ -1 & -2 \end{pmatrix} x(t)$$

$$y(t) = (1 \quad 0)x(t)$$

On s'intéresse à la trajectoire de la sortie y(t) obtenue à partir de la condition initiale suivante $x(0) = \binom{1}{0}$. Pour déterminer y(t), on suivra la démarche suivante :

- (6 points) 1. Exprimer la matrice de transition $\phi(t) = e^{At}$ en fonction de t.
- (1 point) 2. Calculer x(t) en fonction de t.
- (1 point) 3. En déduire la solution y(t) en fonction de t.

Problème 3

On considère un système dont les équations symboliques sont :

$$egin{aligned} X_1 &= rE + 2rS - (3r + fp)X_2 \ X_2 &= rac{X_1}{Mp^2} \ X_3 &= 2rX_2 - 2(r + fp)S \ S &= rac{X_3}{2Mp^2} \end{aligned}$$

 \boldsymbol{E} est l'entrée du système, \boldsymbol{S} est sa sortie.

(7 points) 1. En appliquant la règle de Mason, calculer la fonction de transfert du système sous la forme :

$$rac{S}{E} = rac{1}{a_0 + a_1 p + a_2 p^2 + a_3 p^3 + a_4 p^4}$$

où les $\boldsymbol{a_j}$ sont des coefficients à déterminer. En prendra la structure suivante :

\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$oldsymbol{E}$	X_1	X_2	X_3	S