TE41 - FINAL P202 - MARDI 20 JUIN 2023

calculatrice interdite - Formulaire TE41 autorisé

Exercice 1 : Contrainte équivalente de Von Mises - 4 points

Le but de cet exercice est de calculer une contrainte équivalente. En effet la matrice des contraintes est une matrice réelle et symétrique donc à partir de ses 6 coefficients, on va déterminer une contrainte équivalente qui sera une combinaison de ses coefficients. Cette contrainte équivalente est indispensable pour définir les critères de plasticité car la contrainte équivalente doit être inférieure à la limite élastique du matériau.

La contrainte équivalente de Von Mises est définie par :

$$\sigma_{eq}^{VM} = \frac{1}{\sqrt{2}} \sqrt{(\sigma_I - \sigma_{II})^2 + (\sigma_I - \sigma_{III})^2 + (\sigma_{II} - \sigma_{III})^2}$$
 (1)

où σ_I , σ_{II} et σ_{III} représentent les contraintes principales ou valeurs propres de $\underline{\sigma}$.

On reste dans le domaine élastique si : $\sigma_{eq}^{VM} \leq \sigma_e$

Dans cet exercice, on travaille en contraintes planes. La matrice des contraintes est donnée par :

$$\underline{\underline{\sigma}} = \begin{pmatrix} \sigma_{11}(x_1, x_2) & \sigma_{12}(x_1, x_2) & 0\\ \sigma_{12}(x_1, x_2) & \sigma_{22}(x_1, x_2) & 0\\ 0 & 0 & 0 \end{pmatrix}$$

Rappel: Les contraintes principales sont données par :

$$\begin{cases}
\sigma_{I} = \frac{(\sigma_{11} + \sigma_{22})}{2} - \sqrt{\left(\frac{\sigma_{11} - \sigma_{22}}{2}\right)^{2} + \sigma_{12}^{2}} \\
\sigma_{II} = \frac{(\sigma_{11} + \sigma_{22})}{2} + \sqrt{\left(\frac{\sigma_{11} - \sigma_{22}}{2}\right)^{2} + \sigma_{12}^{2}} \\
\sigma_{III} = 0
\end{cases} (2)$$

On souhaite montrer que en contraintes planes, la contrainte équivalente de Von Mises peut aussi s'écrire :

$$\sigma_{eq}^{VM} = \sqrt{\sigma_{11}^2 + \sigma_{22}^2 - \sigma_{11}\sigma_{22} + 3\sigma_{12}^2}$$

- 1. Donner l'expression de la contrainte de Von Mises (1) dans le cas des contraintes planes, $\sigma_{III} = 0$.
- 2. On pourrait remplacer les expressions analytiques des contraintes principales données par (2). On constate que le calcul est fastidieux. Donc nous allons travailler avec les invariants de $\underline{\sigma}$.

Exprimer la trace et le déterminant de $\underline{\sigma}$ dans la base principale.

3. Montrer alors que (1) peut aussi s'écrire :

$$\sigma_{eq}^{VM} = \sqrt{(tr(\underline{\underline{\sigma}}))^2 - 3 \det \underline{\underline{\sigma}}}$$
 (3)

4. En déduire que :

$$\sigma_{eq}^{VM} = \sqrt{\sigma_{11}^2 + \sigma_{22}^2 - \sigma_{11}\sigma_{22} + 3\sigma_{12}^2}$$

Exercice 2: Conservation de la masse - 4 points

Soit dans la configuration initiale un cube de côté a. On note X_i (i = 1, 2, 3), les coordonnées d'un point à l'instant t = 0 dans la configuration non déformée et x_i ses coordonnées dans la configuration déformée. Soit la description lagrangienne suivante :

$$\begin{cases} x_1 = X_1 e^{\alpha t} \\ x_2 = X_2 e^{\alpha t} & \text{avec } \alpha \in \mathbb{R} \end{cases}$$

$$x_3 = X_3$$

- 1. Calculer sa vitesse eulérienne.
- 2. On suppose que la masse volumique à l'instant t = 0 est ρ_0 . Donner l'expression de sa masse volumique ρ à l'instant t. On utilisera l'équation de continuité en eulérienne.
- 3. Donner l'expression de la matrice des transformations \underline{F} .
- 4. Donner l'expression de la masse volumique $\rho(t)$ en utilisant l'équation de continuité en lagrangienne.
- 5. Calculer la masse du cube non déformé.
- 6. Calculer la masse du cube déformé à l'instant t. On rappelle que :

$$m = \iiint_V \rho dv$$

Exercice 3: Contraintes dans une poutre - 12 points

On considère un parallélépipède de longueur totale 2L suivant l'axe \underline{e}_1 , de hauteur 2h suivant l'axe \underline{e}_2 et d'épaisseur e suivant \underline{e}_3 . Le barreau est en appui simple sur la face $x_1 = -L$ et $x_1 = L$.

Sur la face $x_2 = h$, on applique une pression uniforme d'intensité p.

On suppose que le barreau est à l'équilibre et on néglige les forces de volume.

Le matériau est supposé homogène, élastique et isotrope (E, ν) . On se place dans l'hypothèse des petites perturbations.

Dans le repère orthonormé cartésien $(O, \underline{e}_1, \underline{e}_2, \underline{e}_3)$, on considère un milieu défini par :

$$-L \le x_1 \le L$$
 $-h \le x_2 \le h$ $0 \le x_3 \le e$

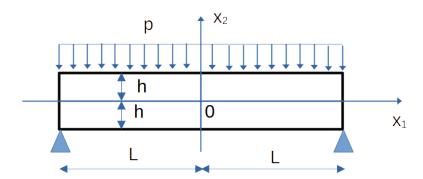


FIGURE 1 – Poutre sur deux appuis subissant une charge répartie dans le plan $(x_1; x_2)$

On cherche à définir la matrice des contraintes en tout point $M(x_1, x_2, x_3)$. On suppose que l'on est en contraintes planes c'est-à-dire que la matrice des contraintes s'écrit dans la base $(\underline{e}_1, \underline{e}_2, \underline{e}_3)$:

$$\underline{\underline{\sigma}} = \begin{pmatrix} \sigma_{11}(x_1, x_2) & \sigma_{12}(x_1, x_2) & 0\\ \sigma_{12}(x_1, x_2) & \sigma_{22}(x_1, x_2) & 0\\ 0 & 0 & 0 \end{pmatrix}$$

On s'inspire de la théorie des poutres et on suppose que :

$$\sigma_{11} = (ax_1^2 + c) x_2$$
 avec : $a, c \in \mathbb{R}$

- 1. En utilisant les conditions limites pour les faces $x_1 = -L$ et $x_1 = L$, déterminer la constante c.
- 2. En utilisant les équations d'équilibre donner la forme de la fonction σ_{12} .
- 3. Utiliser les conditions limites pour les faces $x_2 = -h$ et $x_2 = h$ pour déterminer l'expression de σ_{12} en fonction de a, h, x_1 et x_2 .

- 4. En utilisant les équations d'équilibre donner la forme de la fonction σ_{22} .
- 5. Utiliser les conditions limites pour les faces $x_2 = -h$ et $x_2 = h$ pour déterminer l'expression de σ_{22} en fonction de p, h et x_2 .
- 6. Dans le reste de l'exercice on suppose que :

$$\begin{cases}
\sigma_{11} = \frac{3p}{4h^3} (x_1^2 - L^2) x_2 \\
\sigma_{12} = \frac{3p}{4h^3} (h^2 - x_2^2) x_1 \\
\sigma_{22} = \frac{p}{4h^3} (x_2^3 - 3h^2 x_2 - 2h^3)
\end{cases} \tag{4}$$

On se place dans la section $x_1 = 0$ au milieu de la poutre. Calculer la résultante de la force sur cette face. On ne fait qu'une intégration suivant dx_2 car on est en théorie des poutres.

- 7. Calculer le moment résultant par rapport au point O sur cette section.On ne fait qu'une intégration suivant dx_2 car on est en théorie des poutres.
- 8. Quelle sollicitation subit ce milieu? Justifier votre réponse.
- 9. Donner l'expression du tenseur des déformations linéarisé $\underline{\varepsilon}$ associé en utilisant la loi de Hooke.