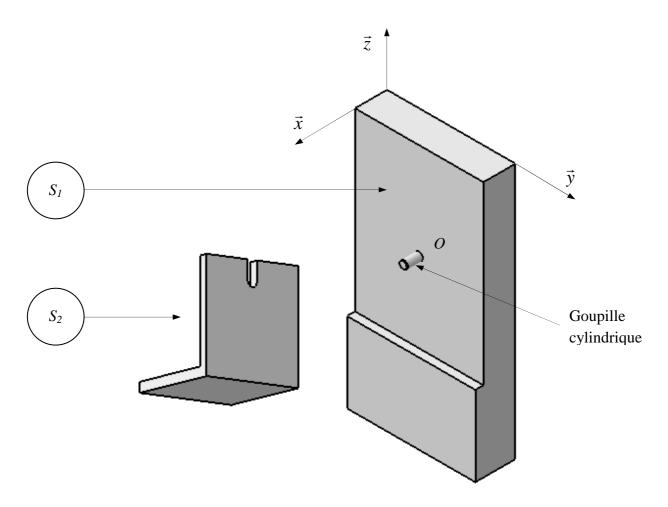


Date: Jeudi 26 Juin 2014

UV: TN 21	Semestre: AUTOMNE	PRINTEMPS
EXAMEN:	MEDIAN FINAL	
NOM:	Prénom :	Né(e) le :
DEPARTEMENT	:	
NIVEAU:	FILIER	E:

Le sujet est composé de 5 parties indépendantes. Les réponses se feront uniquement sur les feuilles des sujets. **Tous les résultats seront justifiés.**

Document RULAND Manufacturing Co.


Signature:

Feuille A4 manuscrite autorisée. SMARTPHONES et GSM interdits Calculatrice autorisée.

Vos initiales : UTBM_P 2014_TN21_Final

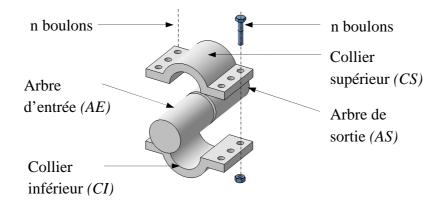
Etude de la MIP d'une liaison encastrement

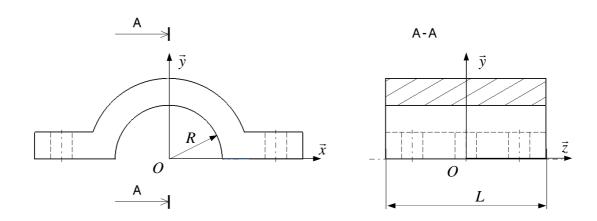
On se propose d'étudier la MIse en Position (MIP) retenue pour assembler les pièces (S_1) et (S_2) au moyen d'une liaison encastrement (figure ci-dessous).

1- Définir le couple de Surfaces Primaires SP1 de la pièce (S_1) et SP2 de la pièce (S_2) et **les repérer** sur la figure ci-dessus.

Indiquer les Degrés De Liberté (*DDL*) qui persistent après la mise en contact de *SP1* et de *SP2*.

SP1:			
SP2:			
DDL:			

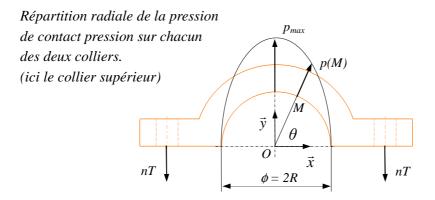

Vos initiales : UTBM_P 2014_TN21_Final


Indiquer les Degrés De Liberté (<i>DDL</i>) qui persistent après la mise en contact de <i>SS1</i> et de <i>SS2</i> .
SS1:
SS2:
DDL:
Définir le couple de Surfaces Tertiaires STI de la pièce (S_1) et $ST2$ de la pièce (S_2) et les repérer sur la figure page 2. Indiquer les Degrés De Liberté (DDL) qui persistent après la mise en contact de STI et de $ST2$.
ST1:
ST2:
DDL:

Etude d'un accouplement rigide par colliers fendus

On se propose de calculer l'effort axial maximal noté F_{max} et le couple maximal noté C_{max} transmissibles par un accouplement par colliers fendus tel que représenté cidessous.

Le moyeu en deux parties (collier supérieur et collier inférieur) est lié par pincement aux deux arbres. Le serrage T de 2n boulons crée une pression de contact entre l'arbre et les deux colliers.



1- Déterminer l'expression de la pression maximale p_{max} .

La pression en un point M de la surface de contact entre le collier supérieur et l'arbre, notée p(M), est définie par : $p(M) = p_{max} \sin^2 \theta$ avec $0 \le \theta \le \pi$

La répartition de pression est supposée uniforme longitudinalement et fonction de θ radialement.

On isole le collier supérieur (CS). Il est soumis aux actions des 2n boulons et des 2 arbres. On néglige les actions à distance devant celles-ci.

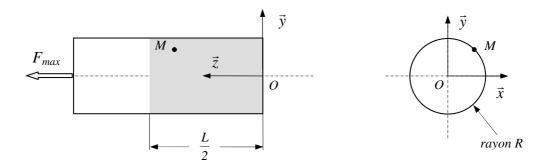
Appliquer le principe fondamental de la statique à ce collier (CS) en écrivant le théorème de la somme en projection sur la direction (\vec{y}) .

On rappelle qu'en coordonnées cylindriques l'élément d'aire $dS = R dz d\theta$. On note L la longueur de chaque collier.

Rappel:
$$\int \sin^3 x dx = -\cos x + \frac{\cos^3 x}{3} + cste$$

$$p_{max} =$$

(en fonction de n, T, R et L


2- Déterminer l'expression de l'effort axial maximal transmissible F_{max} .

On isole l'arbre d'entrée (AE). Il est soumis à l'effort axial maximal F_{max} et aux actions du collier supérieur (CS) et du collier inférieur (CI). On néglige les actions à distance devant celles-ci.

Appliquer le principe fondamental de la statique à l'arbre d'entrée (AE) en écrivant le théorème de la somme en projection sur la direction (\vec{z}) .

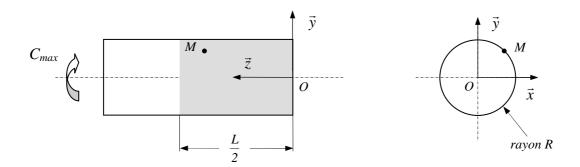
Le collier supérieur (CS) et le collier inférieur (CI) sont en contact avec l'arbre d'entrée sur la moitié de leur longueur L.

On note f le coefficient d'adhérence entre l'arbre et les colliers.

Représenter sur la figure ci-dessus les actions de contact d'un collier sur l'arbre d'entrée en un point M de l'arbre et déterminer F_{max}

$$F_{max} =$$

(en fonction de n, f et T)

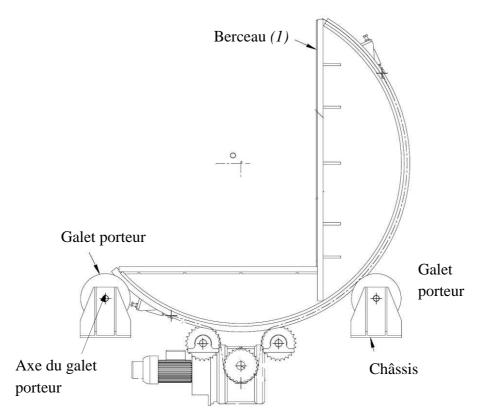

3- Déterminer l'expression du couple maximal transmissible C_{max} .

On isole l'arbre d'entrée (AE). Il est soumis au couple maximal C_{max} et aux actions du collier supérieur (CS) et du collier inférieur (CI). On néglige les actions à distance devant celles-ci.

Appliquer le principe fondamental de la statique à l'arbre d'entrée (AE) en écrivant le théorème du moment en O en projection sur la direction (\vec{z}) .

Le collier supérieur (CS) et le collier inférieur (CI) sont en contact avec l'arbre d'entrée sur la moitié de leur longueur L.

On note f le coefficient d'adhérence entre l'arbre et les colliers.


Représenter sur la figure ci-dessus les actions de contact d'un collier sur l'arbre d'entrée en un point M de l'arbre et déterminer C_{max}

 $C_{max} =$

(en fonction de n, f, R et T)

Etude d'une liaison pivot par contact direct

On se propose d'étudier un palier lisse en *Permaglide*® *P1* (sans entretien) de la marque *INA* utilisé dans la liaison pivot entre les galets porteurs et le châssis d'un chariot basculeur de bobines

Données:

- Bague *PAP 6070 P10*,
- Charge radiale appliquée sur le coussinet : $F_R = 65 \text{ kN}$,
- Vitesse de rotation du galet porteur par rapport au châssis : $N_{0, galet} = 4.5 \text{ tr/min}$,
- Diamètre de l'axe des galets porteurs lié au châssis : d = 60 mm,
- Rugosité de l'arbre : $R_a = 2.5 \mu m$
- Température de fonctionnement : $\theta = 75^{\circ} C$
- Pression spécifique $p \le 56 MPa (N/mm^2)$
- Vitesse de glissement $v \le 2 m/s$
- $0.03 \le pv \le 1.8 \, MPa \cdot m/s$

Notations utiles à l'étude :

- p : pression de contact,
- v : vitesse circonférentielle,
- B: longueur de la bague
- L_h : durée de vie nominale,
- f_A : facteur de type de charge,
- f_P : facteur de correction de charge,
- f_V : facteur de correction de vitesse,
- f_{θ} : facteur de correction de température,
- f_R : facteur de correction de rugosité

1- Déterminer le produit pv du coussinet

✓ Déterminer la vitesse circonférentielle *v*

v = m/s

- ✓ Vérifier la validité de cette vitesse
- \checkmark Déterminer la pression spécifique p

 $p = MPa (N/mm^2)$

✓ Vérifier la validité de cette pression

✓ Déterminer le produit pv

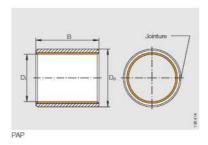
pv = MPa*m/s

√ Vérifier la validité de ce produit

2- Déterminer la durée de vie du coussinet L_h

✓ Déterminer les facteurs de correction

Facteur du type de	Facteur de charge :	Facteur de vitesse :
charge : $f_A =$	$f_p =$	$f_V =$
Facteur de	Facteur de rugosité :	
température : f_{θ} =	$f_R =$	


✓ Calculer la durée de vie L_h

PALIERS LISSES PERMAGLIDE®

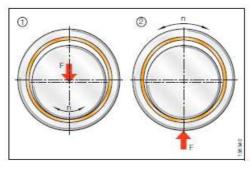
Tableaux de dimensions Permaglide[®]

Bagues

sans entretien, avec support en acier Série PAP..P10

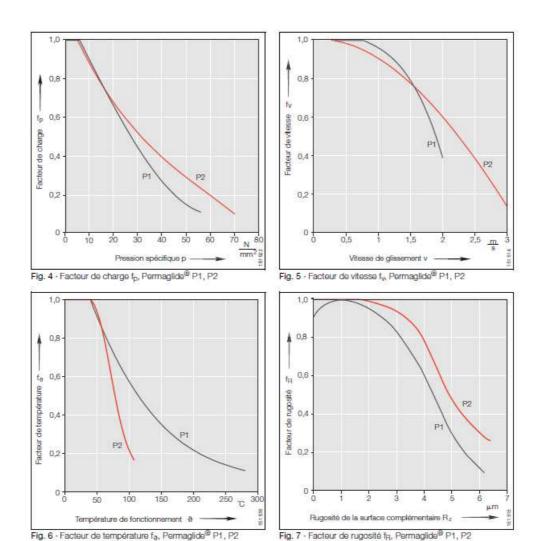
Diamètre	Désignation	Masse	Dimensions		
d'arbre	150	g	Di	D _o	B ±0,25
20	PAP 2010 P10	7,8	20	23	10
	PAP 2015 P10	11,7	20	23	15
	PAP 2020 P10	15,6	20	23	20
	PAP 2025 P10	19,5	20	23	25
	PAP 2030 P10	23,4	20	23	30
22	PAP 2215 P10	12,7	22	25	15
	PAP 2220 P10	17	22	25	20
	PAP 2225 P10	21,3	22	25	25
	PAP 2230 P10	25,5	22	25	30
24	PAP 2415 P10	13,8	24	27	15
	PAP 2420 P10	18,5	24	27	20
	PAP 2425 P10	23,1	24	27	25
	PAP 2430 P10	27,7	24	27	30
25	PAP 2510 P10	9,6	25	28	10
	PAP 2515 P10	14,4	25	28	15
	PAP 2520 P10	19,2	25	28	20
	PAP 2525 P10	24	25	28	25
	PAP 2530 P10	28,8	25	28	30
	PAP 2540 P10	38,4	25	28	40
	PAP 2550 P10	48	25	28	50
28	PAP 2820 P10	29,1	28	32	20
	PAP 2830 P10	43,7	28	32	30

Tolérances de montage préconisées :


Jeux de fonctionnement, épaisseurs de paroi et tolérances des charifreins, voir page 25 et suivantes. Bagues avec dimensions spéciales sur demande,

Diamètre	Désignation	Masse	Dimensions		
d'arbre			Di	Do	B ±0,25
30	PAP 3015 P10	23,3	30	34	15
	PAP 3020 P10	31,1	30	34	20
	PAP 3025 P10	38,8	30	34	25
	PAP 3030 P10	46,6	30	34	30
	PAP 3040 P10	62,1	30	34	40
32	PAP 3230 P10	49,5	32	36	30
	PAP 3240 P10	66	32	36	40
35	PAP 3520 P10	35,9	35	39	20
	PAP 3530 P10	53,9	35	39	30
	PAP 3540 P10	71,8	35	39	40
	PAP 3550 P10	89,8	35	39	50
40	PAP 4020 P10	40,8	40	44	20
	PAP 4030 P10	61,2	40	44	30
	PAP 4040 P10	81,5	40	44	40
	PAP 4050 P10	102	40	44	50
45	PAP 4530 P10	87	45	50	30
	PAP 4540 P10	116	45	50	40
	PAP 4550 P10	145	45	50	50
50	PAP 5020 P10	64	50	55	20
	PAP 5030 P10	96	50	55	30
	PAP 5040 P10	128	50	55	40
	PAP 5060 P10	192	50	55	60
55	PAP 5540 P10	140	55	60	40
	PAP 5560 P10	210	55	60	60
60	PAP 6030 P10	114	60	65	30
	PAP 6040 P10	152	60	65	40
	PAP 6060 P10	228	60	65	60
	PAP 6070 P10	266	60	65	70
65	PAP 6530 P10	123	65	70	30
	PAP 6540 P10	164	65	70	40
	PAP 6550 P10	205	65	70	50
	PAP 6560 P10	246	65	70	60
	PAP 6570 P10	288	65	70	70

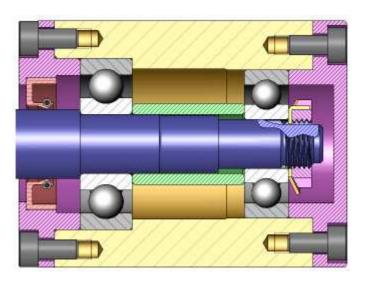
Durée de vie nominale Permaglide® sans entretien P1


$$L_h = \frac{400}{(pv)^{1,2}} f_A \cdot f_p \cdot f_V \cdot f_\theta \cdot f_R$$

Facteurs de correction

Facteur de type de charge f_A

- charge fixe (arbre tournant, bague fixe) : $f_A = 1$
- charge tournante (arbre fixe, bague tournante) : $f_A = 2$
- rondelle : $f_A = 1$

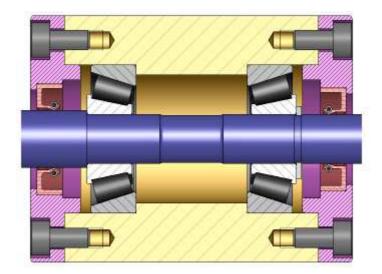


QUATRIEME PARTIE

Montages de roulements

On se propose d'analyser les deux montages de roulements ci-dessous.

Montage M1


- Type de roulements :
- Les arrêts axiaux sont-ils corrects ?

 OUI (justifier):

NON (justifier):

Comment rendre le montage correct ?

Montage M2

- Type de roulements :
- Type de montage :
- Les arrêts axiaux sont-ils corrects ?

 OUI (justifier):

NON (justifier):

Comment rendre le montage correct ?

Calculs de roulements

On se propose d'étudier différents montages de roulements de l'arbre intermédiaire d'une boite de transmission d'un hélicoptère léger.

Cet arbre intermédiaire est en liaison pivot avec le carter de la boite de transmission.

La liaison pivot est réalisée au moyen de deux roulements notés Rlt A et Rlt B.

Trois montages sont envisagés:

- **Montage** (M1): les roulements Rlt A et Rlt B sont deux roulements à billes à contact radial,
- **Montage** (*M2*): les roulements *Rlt A* et *Rlt B* sont deux roulements à billes à contact oblique montés à centres de poussées éloignés ou en « *O* »,
- **Montage** (*M3*): les roulements *Rlt A* et *Rlt B* sont deux roulements rouleaux coniques montés à centres de poussées rapprochés ou en « *X* ».

Une étude préalable a permis de déterminer les charges radiales supportées par chacun des deux roulements ainsi que la charge axiale appliquée sur l'arbre.

Le tableau ci-dessous résume les différents montages.

Montage	Composantes radiales		Composante axiale (*)
	$FR_A(N)$	$FR_{B}\left(N\right)$	A (N)
(M1)	12390	7960	1900
(M2)	10910	9350	1900
(M3)	13310	7100	1900

(*) dirigée du Rlt B vers le Rlt A

1- Montage (M1) – Rotule en A et linéaire annulaire en B

Données:

- Roulement Rlt A:

6226 : $C = 156 \text{ kN}, C_0 = 132 \text{ kN}$

- Roulement Rlt B:

6219 : $C = 109 \ kN, C_0 = 82 \ kN$

11- Calculer la durée de vie du roulement Rlt A

	Expression littérale	Valeur numérique
e		
Y		
P_A		N
$L_{I0 ext{-}A}$		Mtr

12- Calculer la durée de vie du roulement Rlt B:

	Expression littérale	Valeur numérique
P_B		N
$L_{10 ext{-}B}$		Mtr

2- Montage (*M2*)

Données

- Roulement Rlt A:

7226 BG : C = 150 kN, $C_0 = 192,5 \text{ kN}$

- Roulement Rlt B:

7319 BG : $C = 135 \text{ kN}, C_0 = 150 \text{ kN}$

21- Identifier les roulements *Rlt 1* et *Rlt 2*Compléter le schéma des charges axiales

	Indice du Rlt
Rlt A	
Rlt B	

22- Calculer les charges axiales induites RQ_{A1} et RQ_{A2}

	Expression littérale	Valeur numérique (N)
RQ_{AI}		
RQ_{A2}		

23- Calculer les charges axiales F_{A1} et F_{A2} Hypothèse de comportement

Hypothèse	$A + F_{RI}$	F_{R2}
retenue	$2Y_1$	$2Y_2$

24- En déduire les charges axiale

	Expression littérale	Valeur numérique (N)
F_{AI}		
F_{A2}		

25- Calculer les charges dynamiques équivalentes P_1 et P_2

	Expression littérale	Valeur numérique (N)
P_1		
P_2		

 $_{26\text{-}}$ Calculer les durées de vie $L_{\textit{10-1}}$ et $L_{\textit{10-2}}$

	Expression littérale	Valeur numérique (Mtr)
L_{10-1}		
L_{10-2}		

3- Montage (*M3*)

Données

- Roulement *Rlt A*:

TC4B 140 :
$$C = 194 \text{ kN}, e = 0.5 \text{ et } Y = 1.2$$

- Roulement *Rlt B*:

32922 :
$$C = 125 \text{ kN}, e = 0.35 \text{ et } Y = 1.7$$

31- Identifier les roulements *Rlt 1* et *Rlt 2* Compléter le schéma des charges axiales

	Indice du Rlt
Rlt A	
Rlt B	

32- Calculer les charges axiales induites RQ_{A1} et RQ_{A2}

	Expression littérale	Valeur numérique (N)
RQ_{AI}		
RQ_{A2}		

33- Calculer les charges axiales charges axiales F_{A1} et F_{A2} Hypothèse de comportement

Hypothèse	$_{\Delta}+\frac{F_{RI}}{}$	F_{R2}
retenue	$2Y_{I}$	$2Y_2$

34- En déduire les charges axiales

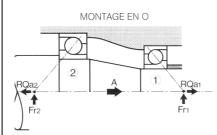
	Expression littérale	Valeur numérique (N)
F_{AI}		
F_{A2}		

35- Calculer les charges dynamiques équivalentes P_1 et P_2

	Expression littérale	Valeur numérique (N)
P_1		
P_2		

36- Calculer les durées de vie L_{10-1} et L_{10-2}

	Expression littérale	Valeur numérique (Mtr)
L 10-1		
L 10-2		

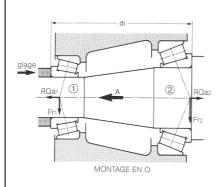

ROULEMENTS A BILLES A CONTACT RADIAL

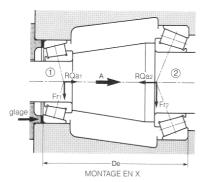
$\frac{F_A}{C_0}$	X	Y	e
0,014		2,30	0,19
0,028		1,99	0,22
0,056		1,71	0,26
0,084		1,55	0,28
0,11	0,56	1,45	0,30
0,17		1,31	0,34
0,28		1,15	0,38
0,42		1,04	0,42
0,56		1,00	0,44

$$\ln(e) = 0.2329 \times \ln\left(\frac{F_A}{C_0}\right) - 0.6776$$

$$Y = \frac{0.44}{e}$$

Arbre monté sur deux roulements à billes à contact oblique


MONTAGE EN X


1) RQa1 RQa2 2

Fr1 Fr2

Charges sur les roulements à contact oblique

Arbre monté sur deux roulements à rouleaux coniques

Roulements à billes à contact oblique ou roulements à rouleaux coniques

L'équilibre axial de l'arbre dépend non seulement des efforts extérieurs à celui-ci (Fr_1 , Fr_2 et A) mais aussi des *forces induites* par les charges radiales appliquées sur chaque roulement.

La force induite par chacun des roulements tend à séparer la bague intérieure de la bague extérieure. Cette force se comporte vis-à-vis du roulement antagoniste comme une *force* axiale supplémentaire.

L'équilibre axial de l'arbre est assuré lorsqu'il y a équilibre du système composé des trois forces :

- \circ A = force axiale extérieure,
- o RQ_{al} = force induite par le roulement (1)
- o RQ_{a2} = force induite par le roulement (2)

On démontre que la force induite d'un roulement à contact oblique qui fonctionne avec jeu nul (ou presque nul) a une valeur déterminée sensiblement égale à $\frac{F_r}{2V}$ d'où :

On applique la règle suivante :

Indice I: roulement dont la force induite a le sens de la force axiale extérieure A.

 P_1 = charge dynamique équivalente du roulement (1)

 P_2 = charge dynamique équivalente du roulement (2)

o Si $A + \frac{F_{r1}}{2Y_1} > \frac{F_{r2}}{2Y_2}$ le roulement (1) fonctionne avec du

jeu

Donc
$$P_1 = F_{r_1}$$
 et $F_{a2} = A + \frac{F_{r_1}}{2Y_1}$ d'où :

$$P_2 = F_{r2} \quad si \ \frac{F_{a2}}{F_{r2}} \le e$$

$$P_2 = X \cdot F_{r2} + Y_2 \cdot F_{a2} \quad si \quad \frac{F_{a2}}{F_{r2}} > e$$

O Si $A + \frac{F_{r1}}{2Y_1} < \frac{F_{r2}}{2Y_2}$ 'le roulement (2) fonctionne avec du

jeu

Donc
$$P_2 = F_{r2}$$
 et $F_{a1} = \frac{F_{r2}}{2Y_2} - A$ d'où:

$$P_1 = F_{r1} \quad si \quad \frac{F_{a1}}{F_{r1}} \le e$$

$$P_1 = X \cdot F_{r1} + Y_1 \cdot F_{a1} \quad si \ \frac{F_{a1}}{F_{r1}} > e$$

Pour les roulements à billes à contact oblique :

$$X = 0.35$$
 $Y = 0.57$ $e = 1.14$

Pour les roulements à rouleaux coniques :

X = 0,4 Y et e : voir tableau des caractéristiques