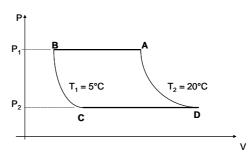
Final


Exercice n° 1

Débit d'une pompe à chaleur

On étudie la possibilité de chauffage d'une maison par une pompe à chaleur. La température souhaitée de la maison à l'intérieur est 20°C. On veut tirer parti de la proximité d'un lac dont l'eau en profondeur est 5°C. L'installation électrique permet de disposer de 10 Ampères sous 380V. Le dispositif utilise de l'air, considéré comme un gaz parfait, auquel on fait parcourir un cycle qui comporte deux branches d'isothermes l'une à 5°C et l'autre à 20°C.

- 1. Faire un schéma descriptif du fonctionnement de la pompe à chaleur en précisant les différents échanges d'énergie et leurs signes. Quelle est l'énergie fournie par le moteur par
- 2. En écrivant les deux principes de la thermodynamique, quelle est la quantité de chaleur que peut fournir par seconde une pompe à chaleur en fonctionnant réversiblement?
- 3. On ferme le cycle par deux transformations à pression constante P₁ et P₂.Exprimer le travail total sur le cycle pour une masse m de fluide en fonction de m, M (masse molaire de l'air), R (constante des gaz parfaits), P1 et P2 pour les transformations isothermes et en fonction de m, M (masse molaire de l'air), R (constante des gaz parfaits), T₁ et T₂ pour les transformations isobares. Quelle est la quantité d'air qu'il faut traiter par seconde si on choisit un rapport de pression (P₁/P₂) de 10? En déduire le volume d'air correspondant.

Données pour l'air :M = 29 g/mol.

Exercice n° 2

Etude d'un turbo-propulseur

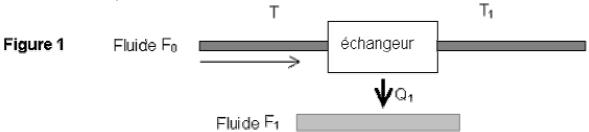
Un turbo-propulseur est un moteur à réaction dont l'organe essentiel est constitué par une turbine à gaz dont le rôle est d'entraîner, outre le compresseur, l'hélice propulsive. Le cycle de turbo-propulseur est assimilable à un cycle de Joule, le gaz utilisé est de l'air (considéré comme gaz parfait).

Première phase : l'air, à T_0 = 280 K et P_0 = 1 atm est aspiré dans le compresseur qui le porte à P_1 = 10 atm et T₁ par une évolution adiabatique réversible. On appelle W₁ le travail fourni par le compresseur à l'unité de masse d'air, encore égal à la variation d'enthalpie sur la première transformation.

Deuxième phase : à la sortie du compresseur, l'air pénètre dans la chambre de combustion où sous pression constante P₁, sa température est portée à T'₁ = 1000K. On appelle Q la quantité de chaleur fournie à l'unité de masse d'air dans cette transformation.

Troisième phase : l'air parvient alors à un ensemble tuyère turbine où il subit une détente adiabatique réversible. A la fin de la détente, la pression de l'air est $P_2 = P_0$ et sa température est T_2 . On appelle W₂ le travail que l'unité de masse fournit à l'arbre de la turbine pendant la détente, égal encore à la variation d'enthalpie sur cette troisième transformation.

Quatrième phase : l'air est rejeté dans l'atmosphère extérieure où il se refroidit à pression constante P_0 de la température T_2 à la température T_0 .


- Tracer le cycle dans le diagramme de Clapeyron
 Donner les expressions et valeurs numériques de T₁ et W₁.
- 3. Calculer Q.
 4. Donner les expressions et valeurs numériques de T₂ et W₂.
- 5. Quel est le travail massique disponible à l'hélice?
- 6. Définir et calculer le rendement du turbo-propulseur.

Données: $\gamma = 1,4$ M(air) = 29 g/mol

Exercice n° 3

Centrale thermique

Un fluide F_0 sort du réacteur de la centrale à la pression P et à la température T. Il est envoyé dans ces conditions dans un échangeur thermique où il cède de la chaleur à un second fluide F_1 , qui sert à actionner les turbines de la centrale. Le fluide F_0 sort de l'échangeur à la température T_1 et est renvoyé dans le réacteur, sa pression restant égale à P durant tout le cycle (cf. figure 1). Le fluide F_0 est décrit par son énergie interne U(T) et son enthalpie H(T); de plus sa capacité thermique massique à pression constante C_P est constante.

 Soit 1 kg de fluide F₀ formant un système fermé évoluant dans l'échangeur thermique de la température T à la température T₁ à pression constante P. Exprimer la chaleur Q₁ cédée par ce système en fonction des données C_P, T₁ et T.

Lors du transfert de l'unité de masse de fluide F_0 dans l'échangeur thermique, celui-ci cède au fluide F, en totalité la chaleur Q_1 évaluée en 1). D'autre part, le fluide F_1 constitue un système fermé qui décrit une évolution cyclique réversible dans une machine thermique en fournissant à l'extérieur un travail W, en recevant la chaleur Q_1 de F_0 et en cédant une chaleur Q_1 à l'atmosphère dont la température est T_0 . La machine est assimilée à une machine ditherme réversible fonctionnant entre une source chaude de température T_1 et une source froide de température T_0 .

- 2. Faire un schéma des échanges pour le système Fluide F₁. On précisera clairement les signes correspondant à chacun de ces échanges d'énergie.
- 3. En appliquant les principes de la thermodynamique, établir deux relations entre W, Q₁, Q'₁, T₀ et T₁.
- 4. Rappeler la définition de l'efficacité thermodynamique ε de cette machine ditherme et l'exprimer en fonction de T_0 et T_1 (théorème de Carnot).
- 5. Exprimer le travail fourni W en fonction de C_P , T_1 , T et T_0 .
- 6. Interpréter concrètement la valeur particulière de W lorsque $T_1=T_0$. Même question lorsque $T_1=T$.
- 7. Montrer que, T et T_0 étant fixées, W passe par un maximum W_m pour une valeur particulière T_m de T_1 . Exprimer T_m en fonction de T et T_0 et montrer alors que W_m s'écrit $W_m = C_P \ (\sqrt{T} \sqrt{T_0})^2$.
- 8. Tracer l'allure du graphe de W en fonction de T_1 pour $T_0 < T_1 < T$.

On définit le rendement du dispositif comme le rapport du travail maximum récupérable sur la chaleur Q qu'on pourrait retirer de l'unité de masse du fluide F₀ par refroidissement isobare de T à T₀

$$\eta = \frac{W_m}{Q}$$

- 9. Exprimer η en fonction de T et de T_0
- 10. Exprimer l'efficacité de Carnot ε d'une machine ditherme qui fonctionnerait entre deux sources

à T₁ et T₀ puis l'exprimer en fonction de T et T₀. Montrer que
$$\eta = \frac{\mathcal{E}}{2 - \mathcal{E}}$$

11. Tracer l'allure du graphe de η fonction de ε , pour $0<\varepsilon<1$.