1

TR52: final examination

Spring semester - 2010

Questions on the Ada language

Please, answer to the following questions (please no more than 5 lines each
answer):

1.

What is the basic element or construction for encapsulation in Ada?
(Reminder: you can "encapsulate" everywhere.)

Mention some programmer’s interests or advantages in using Ada pack-
ages.

In the case of Ada's generic procedures and generic packages, what kind
of attributes can be generic parameters ? (Mention at least one kind

of attributes).

Mention the two basic mechanisms for handling exceptions. Which one
is proposed in Ada 7 Which of these two mechanisms is more similar

to the preemption mechanism 7
How an Ada task puts itself to wait during a fixed period of time ?
Describe briefly the watchdog mechanism of the Ada language.

Consider the following source code :

WITH Ada.Text_IO0;
WITH Ada.Integer Text_I0;
PROCEDURE task_demo_01 IS



UTBM-Computer Science Final exam TR52 A10

TASK TYPE intro_task (message : Integer);
TASK BODY intro_task IS

BEGIN
Ada.Text_I0.put (Item => "From Task ");
Ada.Integer_Text_I0.put (Item => message, Width => 1);
Ada . Text_ID.new_line;

END intro_task;

Task_1 : intro_task (message => 1);

Task_2 : intro_task (message => 2);

Task_3 : intro_task (message => 3);
BEGIN

NULL;
END task_demo_01;

When the program is executed many times, messages can be displayed
" in different orders at each execution :

From Task 3 From Task 1 From Tazk 3
From Task 1 or From Task 3 or From Task 2
From Task 2 From Task 2 From Task 1

Explain how to use the rendez-vous mechanism of Ada to obtain the
following output, at all executions:

From Task 1
From Task 2
From Task 3

2 Exercice on Real Time Java

A traffic regulation system uses several cameras to monitor the flow of ve-
hicles at a crossroad. The cameras are placed on top of the traffic lights of



UTBM-Computer Science Final exam TR52 A10

each street that leads to the crossroad. Each camera points to the queue of
cars that are waiting at its corresponding traffic light. The traffic regulation
system is built on a real time java computer and is designed with two layers.

The first layer is composed of several threads (class QueueAnalyzer)
that have to estimate the number of waiting cars at the traffic lights. There is
one such thread linked to each camera of the crossroad. The logic of the class
QueueAnalyzer is to capture an image (method “TrImage getImg()”)
and to analyze it in order to determine the nurnber of waiting cars (method
“int getCarNbr(TrImage)”). The class TrImage is a given class that
represents the images gotten from the cameras. These threads will be periodic
with a 1 sec period, and a estimation cost of 15ms.

The second layer holds a single thread that is the traffic regulator (class
TrafficRegul). Its goal is to choose the traffic light that has the most
vehicles waiting, and turn this traffic light green. The class TrafficRegul
uses the following given methods: :

* method “int selectTrafficLight (int]] tabCarNbr)” will determine
which traffic light should be turned green. The parameter is an int
array that gives the number of waiting cars, tabCar Nbr [i], for the traffic
light of indice ;.

» method “void setGreen(int t1)” turns the traffic ight of indice # to
green. It allows thus the corresponding waiting cars to drive.

e method “void setRed(int tI)” turns the traffic light of indice # to
red.

The class TrafficRegul has to be a periodic thread with a period of 1 sec,
and an estimation cost of 30 ms.

1. Propose a realtime solution principle for this problem, and write an
UML diagram class.

2. Give the constructor and the logic of the two main realtime java threads
(class QueueAnalyzer and class TrafficRegul), as well as other classes
that you may need for this traffic regulation system.

3. The proposed system has a major drawback, when one street has a big
traffic, and another as little waiting vehicles. In this case, these cars
will wait too long to drive through the crossroad. Propose a real time

3



UTBM-Computer Science Final exam TR52 A10

solution {only the design idea) in order that every car do not have to
wait more than five minutes.

3 Exercice on the UPPAAL modeling language

Figure 1 presents the end of an assembly line, where parts are transferred
from TSA to Bl by RA1 or from TSA to B2 by RA2. Parts arrive to the TSA
every t, seconds, with ¢, € {5, 6, 7} (with equal probability). Transfer
time from TSA to Bl by RA1 or to B2 by RA2 equals 6 seconds (total cycle
time). A failure of RA1 is detected if RA1 does not send a signal EOT (end
of transfer) 10 seconds after the beginning of a transfer. In this case, RAZ is
activated, and begins to transfer parts to B2.

@e=—=\r7

o
- - - TSA TSA : temporary stocking area

-
C—=e]
RA2

Figure 1: Assembly line termination

RA1, RA2 : rehaotic arms

B1, B2 : boxes

‘Work to be done :

1. Model this system with the UPPAAL automata language {include dec-
larations). Modularity will be appreciated (for instance: a supervisor
automaton, robot automata, ...) —

2. Express, using the UPPAAL property language, the following proper-
ties:

P1: The number of pieces in the TSA always remain < 5.
P2: If a failure of RA1 is detected, pieces begin to arrive to box B2.



